ES如何查询索引的全量数据

本文详细介绍了在Elasticsearch中如何通过调整`index.max_result_window`和使用Scroll API查询索引的全量数据,避免内存消耗过大。重点讲解了设置、配置和实践过程,以及为何推荐使用Scroll API而非常规分页查询。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述

查询全表数据也是日常工作中常见的一种查询场景。
在ES如果我们使用match_all查询索引的全量数据时,默认只会返回10条数据。
那么在ES如何查询索引的全量数据呢?

小实验

1、索引和数据准备

PUT book
{
  "mappings": {
    "properties": {
      "name": {
        "type": "text", "analyzer": "ik_smart"
      },
      "price": {
        "type": "double"
      }
    }
  }
}

PUT /book/_bulk
{ "create": { } }
{"name": "java编程思想","price": 100}
{ "create": { } }
{"name": "ES实战","price": 120}
{ "create": { } }
{"name": "ES从入门到精通","price": 60}
{ "create": { } }
{"name": "微服务架构 设计模式","price": 160}
{ "create": { } }
{"name": "架构真经","price": 90}
{ "create": { } }
{"name": "spring boot实战","price": 50}
{ "create": { } }
{"name": "高性能mysql","price": 80}
{ "create": { } }
{"name": "java进阶1","price": 10}
{ "create": { } }
{"name": "java进阶2","price": 20}
{ "create": { } }
{"name": "java进阶3","price": 30}
{ "create": { } }
{"name": "java进阶4","price": 40}
{ "create": { } }
{"name": "java进阶5","price": 50}

2、match_all全匹配查询

GET book/_search

等同于

GET book/_search
{
  "query": {
    "match_all": {}
  }
}

发现只返回了10条记录。
这样因为_search查询默认采用的是分页查询,每页记录数size的默认值为10.

3、添加size参数

GET book/_search
{
  "query": {
    "match_all": {}
  },
  "size": 100
}

将size值设置为100,而我们只添加了13条记录,所以成功返回索引的全量记录。

4、size大于10000

GET book/_search
{
  "query": {
    "match_all": {}
  },
  "size": 20000
}

返回结果:

{
  "error" : {
    "root_cause" : [
      {
        "type" : "illegal_argument_exception",
        "reason" : "Result window is too large, from + size must be less than or equal to: [10000] but was [20000]. See the scroll api for a more efficient way to request large data sets. This limit can be set by changing the [index.max_result_window] index level setting."
      }
    ],

异常说明:
1、查询结果的窗口太大,from + size的结果必须小于或等于10000,而当前查询结果的窗口为20000。
2、可以采用scroll api更高效的请求大量数据集。
3、查询结果的窗口的限制可以通过参数index.max_result_window进行设置。

index.max_result_window

The maximum value of from + size for searches to this index. Defaults to 10000. Search requests take heap memory and time proportional to from + size and this limits that memory. See Scroll or Search After for a more efficient alternative to raising this.
说明:
参数index.max_result_window主要用来限制单次查询满足查询条件的结果窗口的大小,窗口大小由from + size共同决定。不能简单理解成查询返回给调用方的数据量。
这样做主要是为了限制内存的消耗。
请求大数据集推荐采用Scroll or Search After
比如:from为1000000,size为10,逻辑意义是从满足条件的数据中取1000000到(1000000 + 10)的记录。这时ES一定要先将(1000000 + 10)的记录(即result_window)加载到内存中,再进行分页取值的操作。
尽管最后我们只取了10条数据返回给客户端,但ES进程执行查询操作的过程中确需要将(1000000 + 10)的记录都加载到内存中,可想而知对内存的消耗有多大。
这也是ES中不推荐采用(from + size)方式进行深度分页的原因

同理,from为0,size为1000000时,ES进程执行查询操作的过程中确需要将1000000 条记录都加载到内存中再返回给调用方,也会对ES内存造成很大压力。

1.参数设置

PUT book/_settings
{ 
  "index.max_result_window" :"5"
}

注意:
1、此方法是设置单索引,如果需要更改索引需要将book换成_all
2、即使换成_all,对于新增的索引,还是默认的10000

2.查看参数

查看所有索引中的index.max_result_window值:

GET _all/_settings/index.max_result_window

查看book索引的_settings配置:

GET book/_settings

查看_settings配置中的参数index.max_result_window的值:

GET book/_settings/index.max_result_window

Scroll api实践

改动index.max_result_window参数值的大小,只能解决一时的问题,当索引的数据量持续增长时,在查询全量数据时还是会出现问题。而且会增加ES服务器内存大结果集消耗完的风险。
最佳实践还是根据异常提示中的采用scroll api更高效的请求大量数据集。

1.DSL命令查询

1、查询命令中新增scroll=1m,说明采用游标查询,保持游标查询窗口一分钟。
2、这里由于测试数据量不够,所以size值设置为2。实际使用中为了减少游标查询的次数,可以将值适当增大,比如设置为1000。

GET /book/_search?scroll=1m 
{
    "query": { "match_all": {}},
    "size":  2
}

查询结果:
除了返回前2条记录,还返回了一个游标ID值_scroll_id

{
  "_scroll_id" : "FGluY2x1ZGVfY29udGV4dF91dWlkDXF1ZXJ5QW5kRmV0Y2gBFm1ab2pDVEpiVGh5ZWthYnRQanB5YlEAAAAAABRP-xZHYWJiZzJGNFJYQ1RPS0dZb1VwejRR",
  "took" : 0,
  "timed_out" : false,
  "_shards" : {
    "total" : 1,
    "successful" : 1,
    "skipped" : 0,
    "failed" : 0
  },
  ……
}

采用游标id查询:

GET /_search/scroll
{
    "scroll": "1m", 
    "scroll_id" : "FGluY2x1ZGVfY29udGV4dF91dWlkDXF1ZXJ5QW5kRmV0Y2gBFm1ab2pDVEpiVGh5ZWthYnRQanB5YlEAAAAAABRP5BZHYWJiZzJGNFJYQ1RPS0dZb1VwejRR"
}

说明:
多次根据scroll_id游标查询,直到没有数据返回则结果查询。。
采用游标查询索引全量数据,更安全高效,限制了单次对内存的消耗。

2.java高级API实现

/**
 * 通过游标查询所有数据
 * @return
 */
public  <T> List<T> searchAllData(SearchRequest searchRequest, Class<T> clazz)  {
    List<T> tList = new ArrayList<>();
    final Scroll scroll = new Scroll(TimeValue.timeValueMinutes(1L));
    searchRequest.scroll(scroll);
    try{
        SearchResponse searchResponse = highLevelClient.search(searchRequest);
        String scrollId = searchResponse.getScrollId();
        log.info("ES查询DSL语句:\nGET  {}\n{}", String.format("/%s/_search", searchRequest.indices()[0]), searchRequest.source());
        //打印命中数量
        log.info("命中总数量:{}", searchResponse.getHits().getTotalHits());
        SearchHit[] searchHits = searchResponse.getHits().getHits();
        while (searchHits != null && searchHits.length > 0) {
            SearchHits hits = searchResponse.getHits();
            List<T> resultList = Arrays.stream(hits.getHits()).map(e -> {
                String jsonStr = e.getSourceAsString();
                return JSON.parseObject(jsonStr, clazz);
            }).collect(Collectors.toList());
            if(!CollectionUtils.isEmpty(resultList)){
                tList.addAll(resultList);
            }
            SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId);
            scrollRequest.scroll(scroll);
            searchResponse = highLevelClient.searchScroll(scrollRequest);
            searchHits = searchResponse.getHits().getHits();
        }

        ClearScrollRequest clearScrollRequest = new ClearScrollRequest();
        clearScrollRequest.addScrollId(scrollId);
        ClearScrollResponse clearScrollResponse = highLevelClient.clearScroll(clearScrollRequest);
        boolean succeeded = clearScrollResponse.isSucceeded();
    }catch (Exception e){
        log.error("执行EsService的searchAllData方法出现异常", e);
    }
    return  tList;
}

注意:
1、尽管通过采用Scroll API提高的查询全量数据的性能,减少了ES服务器的内存消耗。但是当返回结果集过大的时候,也会出现将调用方应用的内存撑爆的风险。
2、推荐的做法是:在调用searchAllData方法查询索引全量数据时,在方法内部添加返回记录条数的限制。避免出现返回几百万、甚至上千万的结果集,导致调用方程序由于内存吃完而宕机。


总结

1、本文主要介绍了如何通过Scroll API查询索引的全量数据。
2、介绍了index.max_result_window参数和相关配置方法。
3、尽管通过采用Scroll API查询索引全量数据提高了查询效率并减少了ES服务器的内存消耗。当同时要注意不要返回太大的结果集撑爆调用方应用的内存。
4、针对ES大结果集的查询,要同时考虑ES服务提供方和请求调用方的内存消耗。

<think>好的,用户现在问的是Elasticsearch是否支持导出全量数据。我需要先回顾一下之前的历史对话。之前用户问过关于分片数的问题,我的回答详细解释了分片数的配置和影响。现在用户可能在使用ES的过程中遇到了需要导出数据的需求,比如备份、迁移或者分析。 首先,用户可能想知道ES有没有内置的工具或方法来导出所有数据。我需要先确认ES本身是否支持全量导出。ES本身没有直接的“导出”按钮,但确实有一些方法可以实现,比如使用Scroll API或者Snapshot功能。此外,用户可能对数据格式有要求,比如导出为JSON、CSV等,这时候可能需要结合其他工具如Logstash或者Elasticdump。 然后,用户可能的场景包括数据备份,迁移到另一个集群,或者导出到其他系统进行分析。比如,用户可能需要定期备份数据,或者在升级ES版本前做数据迁移。也有可能用户需要将数据导出到Hadoop或数据库中进行进一步处理。 另外,用户可能没有说出来的深层需求是导出过程的效率和安全性。比如,大数据量下如何高效导出而不影响集群性能,或者如何确保数据在导出过程中的完整性。这时候Snapshot是一个好的选择,因为它可以在集群级别高效备份,而Scroll API可能更适合小规模数据,但需要注意性能问题。 还要考虑用户的技术水平。如果用户是管理员,可能更熟悉Snapshot和集群配置;如果是开发者,可能更倾向于使用API或工具如Elasticsearch-dump。需要给出不同方法的步骤和适用场景,帮助用户选择最合适的方式。 另外,用户可能关心导出后的数据格式是否可用。比如,导出为JSON是否保留结构,或者是否需要转换格式。Logstash可以输出到多种目的地,并且支持转换,这可能是一个优势。 最后,需要提醒用户一些注意事项,比如确保集群状态健康,备份时的版本兼容性,以及导出过程中的资源占用问题。比如,Snapshot需要共享文件系统或云存储,而Scroll API在大量数据时可能需要优化查询和批次大小。</think>### **1. 直接答案** **是的,Elasticsearch 支持导出全量数据**,但需通过特定 API 或工具实现,且需根据场景选择合适的方法。 --- ### **2. 导出全量数据的常见方法** #### **(1) 使用 Scroll API(适用于编程导出)** - **原理**:通过分页(游标)遍历所有文档,适合数据量较大时逐步拉取。 - **步骤**: 1. 初始化游标: ```json POST /your_index/_search?scroll=1m { "size": 1000, "query": {"match_all": {}} } ``` - `scroll=1m`:游标有效期 1 分钟 - `size`:每批拉取文档数(建议 1000~10000) 2. 逐批获取后续数据: ```json GET /_search/scroll { "scroll": "1m", "scroll_id": "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm..." } ``` - **注意事项**: - 需自行处理数据存储(如写入文件、发送到其他系统)。 - 深分页性能差,避免直接使用`from/size`。 --- #### **(2) 使用 Elasticsearch Snapshot(集群级备份)** - **原理**:通过快照(Snapshot)将全量数据备份到外部存储(如 S3、HDFS、共享文件系统)。 - **适用场景**: - 全量数据备份与恢复 - 跨集群迁移 - **步骤**: 1. **注册快照仓库**: ```json PUT /_snapshot/my_backup_repo { "type": "fs", "settings": { "location": "/mnt/shared_storage/es_backups", "compress": true } } ``` 2. **创建快照**: ```json PUT /_snapshot/my_backup_repo/snapshot_20231001 { "indices": "*", // 备份所有索引 "ignore_unavailable": true, "include_global_state": false } ``` 3. **恢复数据**: ```json POST /_snapshot/my_backup_repo/snapshot_20231001/_restore ``` - **注意事项**: - 需提前配置存储路径(如 NFS、S3 插件)。 - 快照过程对集群性能影响较小(增量备份)。 --- #### **(3) 使用 Logstash(结构化导出)** - **原理**:通过 Logstash 的 `elasticsearch` 输入插件读取数据,输出到文件或其他系统(如 CSV、数据库)。 - **示例配置**: ```conf input { elasticsearch { hosts => ["http://localhost:9200"] index => "your_index" query => '{ "query": { "match_all": {} } }' size => 1000 scroll => "1m" docinfo => true } } output { file { path => "/data/export/your_index_%{+yyyyMMdd}.json" } } ``` - **优势**: - 支持数据格式转换(如 CSV、JSON Lines)。 - 可直连其他存储(如 MySQL、S3)。 --- #### **(4) 使用 Elasticsearch-dump(命令行工具)** - **工具特性**: - 开源工具(基于 Node.js),支持全量/增量导出。 - 导出格式为 JSON,适合小规模数据迁移。 - **命令示例**: ```bash # 导出索引数据 elasticdump \ --input=http://localhost:9200/your_index \ --output=/data/export/your_index.json \ --type=data # 导出索引映射 elasticdump \ --input=http://localhost:9200/your_index \ --output=/data/export/your_index_mapping.json \ --type=mapping ``` - **限制**: - 大数据量时性能较差(单线程)。 --- ### **3. 关键注意事项** | 方法 | 数据量限制 | 性能影响 | 适用场景 | |---------------|----------------|----------|------------------------------| | Scroll API | 无上限 | 中等 | 编程化导出、自定义处理 | | Snapshot | 无上限 | 低 | 全量备份、跨集群迁移 | | Logstash | 建议 < 1TB | 中等 | 格式转换、多目标输出 | | Elasticdump | 建议 < 100GB | 高 | 快速导出小规模数据 | --- ### **4. 高频问题解答** #### **(1) 如何避免导出时影响集群性能?** - **优化建议**: - 使用快照备份(后台低优先级操作)。 - 在业务低峰期执行导出。 - 限制 Scroll API 的 `size` 和并发请求数。 #### **(2) 导出的 JSON 文件如何重新导入?** - **使用 Bulk API**: ```bash curl -XPOST http://localhost:9200/_bulk \ -H "Content-Type: application/x-ndjson" \ --data-binary @exported_data.json ``` - 要求文件格式为 NDJSON(每行一个操作描述 + 数据)。 #### **(3) 导出时如何过滤数据?** - **方案**: - 在 Scroll API 或 Logstash 查询中添加过滤条件(如时间范围)。 - 示例: ```json { "query": { "range": { "timestamp": { "gte": "2023-01-01" } } } } ``` --- ### **5. 总结** - **优先选择快照**:适合全量备份和迁移,对集群影响最小。 - **灵活组合工具**: - 小数据 + 简单导出 → Elasticdump - 格式转换 + 复杂管道 → Logstash - 编程化控制 → Scroll API - **严格验证数据完整性**:导出后通过记录数、字段抽样校验数据准确性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

斗者_2013

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值