《深度学习框架PyTorch:入门与实践》 读书笔记

本文通过《深度学习框架PyTorch:入门与实践》一书中的案例,详细介绍了如何在PyTorch中创建自定义数据集,包括继承Dataset类、实现__init__、__getitem__和__len__方法的过程,以及如何使用自定义数据集进行图像数据的加载与预处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

《深度学习框架PyTorch:入门与实践》 读书笔记

如下代码是在 jupyter notebook中运行

%env LS_COLORS = None
#列出该目录下的文件夹
!tree  ./dogcat
import torch as t
from torch.utils import data
import os
from PIL import Image
import numpy as np

'''
在pytorch中,数据加载可通过自定义的数据集对象实现。
数据集对象被抽象为Dataset类,实现自定义的数据集需要继承DataSet
'''
class DogCat(data.Dataset):
    def __init__(self,root):
        imgs = os.listdir(root)
        '''
        所有图片的绝对路径,这里实际不加载图片,只是指定路径
        当调用__getitem__时才会真正读取图片
        '''
        self.imgs = [os.path.join(root,img) for img in imgs]
    
    def __getitem__(self,index):
        # 01.得到图形的物理地址
        img_path = self.imgs[index]
        # 02.dog->1, cat->0
        label=1 if 'dog' in img_path.split('/')[-1] else 0
        #open(img_path): Opens and identifies the given image file.
        pil_img = Image.open(img_path)
        # print(type(pil_img))  # 其类型是=> <class 'PIL.JpegImagePlugin.JpegImageFile'>
        np.asarray??
        #np.asarray(): Convert the input to an array => 把图片对象作为输入,并转换成一个数组
        array=np.asarray(pil_img)
        data=t.from_numpy(array)# 将这个数组转换成一个tensor
        # print(type(data)) # -> <class 'torch.Tensor'>
        return data,label
    
    def __len__(self):
        return len(self.imgs)

'''
01.dataset 是DogCat的一个实例,该实例具有的属性是imgs属性
02.
'''    
dataset = DogCat('./dogcat/')

print("==输出dataset中imgs的类型的具体信息==")
print(type(dataset.imgs))
print(type(dataset.imgs).__name__)
print("===============")
print(dataset.imgs)

"""
01.dataset[0] 相当于调用dataset.__getitem__(0),所以它会返回两个值,分别是data,label; 然后赋值给img,label。
即img = data, label = label.
"""
img,label=dataset[0] 

for img ,label in dataset:
    print(img.size(),img.float().mean(),label)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

说文科技

看书人不妨赏个酒钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值