下载bert的预训练模型并加载训练

本文详细介绍了如何从HuggingFace平台下载并使用BERT预训练模型,包括具体的步骤说明及常见问题解决办法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总结

  • 使用 huggingface下载预训练好的bert模型,并加载。
  • 文章来源:csdn:LawsonAbs
  • 文章写于[20201205]

1.具体步骤

  • step1.进入网址 https://huggingface.co 搜索自己需要的模型名(下面以bert-base-uncased 为例)
  • step2.在如下的界面中,找到一个 Files and versions
    在这里插入图片描述
  • step3. 进入如下的界面,(这里以下载pytorch版的模型为例)
    下载如下三个红框中的内容即可。
    在这里插入图片描述
  • step4.具体使用
    我将上述下载好的内容放到了 /home/lawson/pretrain/bert-base-uncased 文件夹下。那么我就可以在程序中这么用:
import torch as t
from transformers import BertTokenizer,BertModel
str = "I used to be a bank, but I lose interest." 
tokenzier = BertTokenizer.from_pretrained("/home/lawson/pretrain/bert-base-uncased")
bert = BertModel.from_pretrained("/home/lawson/pretrain/bert-base-uncased")

2.文件释义

2.1 模型文件

pytorch_model.bin 就是一个pytorch版的模型文件,同样可以在链接中下载tensorflow,或者是rust的模型文件。

2.2 配置文件

config.json 是预训练模型的配置文件,内容如下所示:
在这里插入图片描述

3.其它问题

可能有的时候加载训练好的模型会报错,明明操作是对的,但是就是报错,常见的错误有:OSError: Couldn't reach server at '/home/lawson/pretrain/.... to download configuration...',如下所示:
在这里插入图片描述这种情况的出现是因为 config.json 这个文件中的内容是错误的,导致程序无法识别,删除掉重新下载就好了。【这种情况常出现在网络不佳时下载文件导致】

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

说文科技

看书人不妨赏个酒钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值