总结
- 使用
huggingface
下载预训练好的bert模型,并加载。 - 文章来源:
csdn:LawsonAbs
- 文章写于[20201205]
1.具体步骤
- step1.进入网址
https://huggingface.co
搜索自己需要的模型名(下面以bert-base-uncased
为例) - step2.在如下的界面中,找到一个
Files and versions
- step3. 进入如下的界面,(这里以下载pytorch版的模型为例)
下载如下三个红框中的内容即可。
- step4.具体使用
我将上述下载好的内容放到了/home/lawson/pretrain/bert-base-uncased
文件夹下。那么我就可以在程序中这么用:
import torch as t
from transformers import BertTokenizer,BertModel
str = "I used to be a bank, but I lose interest."
tokenzier = BertTokenizer.from_pretrained("/home/lawson/pretrain/bert-base-uncased")
bert = BertModel.from_pretrained("/home/lawson/pretrain/bert-base-uncased")
2.文件释义
2.1 模型文件
pytorch_model.bin
就是一个pytorch版的模型文件,同样可以在链接中下载tensorflow,或者是rust的模型文件。
2.2 配置文件
config.json
是预训练模型的配置文件,内容如下所示:
3.其它问题
可能有的时候加载训练好的模型会报错,明明操作是对的,但是就是报错,常见的错误有:OSError: Couldn't reach server at '/home/lawson/pretrain/.... to download configuration...'
,如下所示:
这种情况的出现是因为
config.json
这个文件中的内容是错误的,导致程序无法识别,删除掉重新下载就好了。【这种情况常出现在网络不佳时下载文件导致】