论文阅读《Early Detection of Fake News by Utilizing the Credibility of News, Publisers,...》

本文提出一种新的假新闻检测模型,结合发布者和用户信息进行判断。此前方法多从新闻内容或传播路径找线索,存在需大量人工、难用于早期检测等问题。新算法将假新闻检测建模为多任务分类,通过多模块实现,还介绍了主要任务及相关问题解答。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LawsonAbs的认知与思考,还请各位读者批判阅读。

总结

  • 文章来源:csdn:LawsonAbs
  • 本文提出一种新的模型:结合了publisher,user的信息来作为一种判断fake news 的方式。
  • 论文地址:https://arxiv.org/abs/2012.04233
  • 论文名:Early Detection of Fake News by Utilizing the Credibility of News, Publishers, and Users Based on Weakly Supervised Learning

0.要解决的问题

fake news detection

1.之前的方法

  • focus on finding clues from new content or diffusion path. The required features of previos models are often unavailable or insufficient in early detection scenarios, resulting in poor performance.
    其中 features 包括如下几种特征:
  • linguistic features: 耸人的标题
  • user-based features
  • temporal features: news diffusion 过程中的时序特性

这些方法的缺点:

  • 需要大量的人工涉及这些features(有点儿像特征工程)
  • 只能在相当数量转发信息时,才能检测出fake news。但是很少投入在early detection

2.本文的算法

contribution:

根据现实生活出发,结合人类判断的过程,设计出一个结合publisher,user 的判断模型:

  • consider the reputation of the publishers and reposted users. Explicitly take the credibility of publishers and users as supervised information
  • model fake news detection as a multi-task classification task.
  • We provide a principled way to jointly utilize the credibility of publishers and users, and the heterogeneous graph for credibility prediction and fake news detection.

算法解决的问题:

  • How to fully encode the heterogeneous graph structure and news content
  • How to explicitly utilize the credibility of publishers and users for facilitating early detection of fake news.

3.具体实现

  • Firstly, we design a structureaware multi-head attention module to learn the structure of the publishing graph and produce the publisher representations for the credibility prediction of publishers.
  • Then, we apply the structure-aware multi-head attention module to encode the diffusion graph of the news among users and generate user representations for the credibility prediction of users.
  • Finally, we apply a convolutional neural network to map the news text from word embedding to semantic space and utilize the fusion attention module to combine the news, publisher, and user representations for early fake news detection

4.主要任务

下面就是作者提到的在文中训练两个的子任务:
在这里插入图片描述
分别看这两个任务:

4.1 Publisher Credibility Prediction

在这里插入图片描述其中:
在这里插入图片描述这么看 DpD^pDp 就是一个对角阵,其对角处的值就表明这个用户发了多少条news。

根据上面这个公式,应用到具体的情景中,就可以得到下面的这个表达式:
在这里插入图片描述
其中:
在这里插入图片描述
在这里插入图片描述通过线性映射和一个softmax就可以做一个分类。分成三类:
unreliable, uncertain, reliable

交叉熵作损失:
在这里插入图片描述

4.2 User Credibility Prediction

  • 首先是建图
    在这里插入图片描述
    下面介绍 diffusion graph 的encoding algorithm
    在这里插入图片描述在这里插入图片描述

4.3 Fake news Classification

we combine news with publishing and diffusion graph to more comprehensively capture the differences in the content and diffusion mode of true and false news.

4.4 Fusion Attention Unit

主要的功能就是将三块(publisher,user,content representations)融合在一起,下面讲一下怎么融合(无非就是放在一块儿计算)。

  • step1
    - firstly:

  • step2
    在这里插入图片描述就相当于从训练好的结果(look-up table)中找到想要的值。

  • step3
    找出转发过这条信息的所有用户(用于判断这条消息是否是fake的)。然后用一个attention model聚合起来:
    在这里插入图片描述
    在这里插入图片描述

  • step4
    拼接向量
    因为 news content(也就是之前训练好的mjm_jmj) 捕捉到了semantic difference between fake and true news; 而mj^\hat{m_j}mj^ 得到的是 diffusion path 间的差异。
    在这里插入图片描述

  • step5
    计算损失
    在这里插入图片描述

  • step6
    在这里插入图片描述

5.主要问题

5.1 weakly supervised 指什么?

we explicitly treat the credibility of publishersand users as a kind of weakly supervised information for facilitating fake news detection.

  • 损失函数是什么?
    模型的三类都是使用交叉熵作为计算损失。

  • structure-aware 指的是什么?
    将publiser,user等信息编码到matrix中,所以叫 structure-aware。

  • 模型的框架是什么?
    在这里插入图片描述


关于留言中的问题:

  • R∈R∣U∣∗KR \in R^{|U|*K}RRUK 是什么意思?
    在这里插入图片描述直译一下:每条消息最多都有K个不同的用户转发(所以K≤UK \leq UKU)。使用矩阵R∈R∣U∣∗KR \in R^{|U|*K}RRUK 表示之前转发过消息的user ids。当转发用户的数目少于K时,矩阵R是由0填充。

具体的意思应该就是想看user node representation from the diffusion graph

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

说文科技

看书人不妨赏个酒钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值