总结
- 文章来源:CSDN_LawsonAbs
- 给出模型训练中常用的命令
1 指定显卡训练
指定显卡训练有多种方法,这里简单列举两种。
1.1 在程序头添加
有时候,如果我们想在程序运行时就指定使用哪一块显卡,就可以在程序头部添加如下命令:
import os
os.environ[“CUDA_VISIBLE_DEVICES”] = “2”
1.2 在运行的命令前添加
CUDA_VISIBLE_DEVICES=0 这就代表使用第0块显卡。
2 查看显卡状态
nvidia-smi
查看显卡当前使用状态
watch -n2 nvidia-smi : 每隔2s 刷新 nvidia-smi 命令得到得输出

持久化显卡
sudo nvidia-smi -pm 1
本文介绍了在模型训练中如何指定显卡进行训练的两种方法,包括在程序开头设置环境变量和在运行命令前添加参数。同时,讲解了使用`nvidia-smi`命令来查看显卡状态,并通过`sudo nvidia-smi pm -i 1`实现显卡的持久化设置。这些技巧对于有效管理和监控GPU资源在深度学习训练中至关重要。
6150

被折叠的 条评论
为什么被折叠?



