pytorch中的Linear类

这篇博客介绍了线性转换的功能,其数学表达式为y=xA^T+b,其中涉及了输入和输出特征的维度以及是否包含偏置项。权重参数初始值从U(−k,k)中获取,k=1/in_features,而偏置项的初始化方法类似但不完全相同。文章还讨论了权重和偏置的初始化策略,对于理解深度学习模型的训练过程至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

功能:在某个数据上应用一个线性转换,公式表达就是y=xA^T+b
参数:

  • in_features: 每个输入样本的维度
  • out_features:每个输出样本的维度
  • bias: 如果设置成false,则这个线性层不会加上bias,默认为True.

weight:

  • 可学习参数
  • 值从均匀分布U(−k,k)U(-\sqrt{k},\sqrt{k})U(k,k)中获取, 其中k=1in_featuresk = \frac{1}{in\_features}k=in_features1

bias

  • shape : 与输出的维度一致
  • 其值与 weight 初始化的方法相同(好像并不完全相同,weight是根据kaiming_uniform,而bias是根据uniform_) ,都是从均匀分布U(−k,k)U(-\sqrt{k},\sqrt{k})U(k,k)中获取
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

说文科技

看书人不妨赏个酒钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值