pytorch计算一个矩阵行向量之间的相似度

本文介绍如何使用PyTorch进行矩阵操作,包括计算行向量长度、矩阵乘积,并演示了如何通过余弦相似度验证结果。适合理解张量运算在深度学习中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

  • 本文代码可在我的Github 中查看

直接上代码:

import torch as t
a = t.randn(2,4) # 随机初始化一个矩阵
print(a)

# step 1. 计算行向量的长度
len_a = t.sqrt(t.sum(a**2,dim=-1))
print(len_a)

b = len_a.unsqueeze(1).expand(-1,2)
c = len_a.expand(2,-1)
# print(b)
# print(c)

# step2. 计算乘积
x = a @ a.T
print(x)

# step3. 计算最后的结果
res = x/(b*c)
print(res)

最后可以用torch.cosine_similarity函数检验一下是否计算有误。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

说文科技

看书人不妨赏个酒钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值