【经典论文阅读20】《Distilling the Knowledge in a Neural Network》

文章介绍了通过知识蒸馏的方法,将多个大型网络模型的集合压缩到一个单一的小型模型中,以提高效率并减少冗余。在训练过程中,使用软目标和高温度的softmax来指导学生模型学习教师模型的知识。这种方法在MNIST数据集和商业声学模型上都显示出优秀的效果,揭示了模型泛化的新视角。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 动机

(1)虽然一个ensemble的模型可以提升模型的效果,但是在效率方面实在难以接受,尤其是在每个模型都是一个大型的网络模型的时候。
(2)前人的研究结果也已表明:模型参数有很多其实是冗余的。

2. 方法

  • distilling the knowledge in an ensemble of models into a single model.
    作者们之所以这么做又是因为之前有篇文章得到的结论,这个结论【这是一个很重要的结论】是:

it is possible to compress the knowledge in an ensemble into single model.

更加具体的就是:

raise the temperature of the final softmax until the cumbersome model produces a suitably soft set of targets.

3.具体实现

在谈具体实现之前,先把本文涉及到的一些专有术语解释一下:

  • distilled model : 小模型(学生模型)

We have shown that distilling works very well for transferring knowledge from an ensemble or from a large highly regularized model into a smaller, distilled model.

  • cumbersome model: 大模型(教师模型)

4.1 训练教师模型

文中没提到如何训练教师模型,但我的理解是普通的那种训练方式即可。

4.2 训练学生模型

训练学生模型的过程:
在这里插入图片描述
第一项损失:与软目标的交叉熵损失;
第二项损失:与正确目标的交叉熵损失;【权重较小】

5.效果

作者们提出了不同的压缩方法,并且在MNIST数据集上取得了惊人的成绩。同时在一个大量使用的商业系统的声学模型中,也有改善。

不正确值的相对概率告诉我们许多(繁重的模型是如何倾向泛化的)。文中举例解释道:将BMW误认为垃圾车的概率很小,但是这个概率会比将BMW认为是胡萝卜大很多。

作者们提出一种叫做“蒸馏”的通用解决方法,这种方法的做法是:提升最终的softmax中的温度系数直到复杂模型能够产生一个合适的软标签;然后在训练学生模型时照样使用高温度系数来匹配这些软标签。

5.数学知识

文中提到了一个数学知识,也就是下面这个:
在这里插入图片描述
具体的推导我也不会,后面学习了再更。

将神经网络中的知识进行提取,是一种将模型的信息转化为更为简洁和易于理解形式的过程。 神经网络是一种由许多神经元组成的复杂计算模型,它们通过学习和调整权重来解决各种问题。然而,神经网络通常具有大量的参数和复杂的结构,这使得它们难以解释和应用到其他领域。因此,我们需要一种方法来提取和总结神经网络中的知识,以便更好地理解和应用这些模型。 在进行神经网络知识提取时,有几种常见的方法。一种常见的方法是使用可视化技术,如热力图、激活图和网络结构图等,来可视化网络中不同层的活动模式。这些可视化技术能够帮助我们发现网络中的模式和特征,并从中推断出网络的知识。 另一种方法是使用特征提取技术,如卷积神经网络(CNN)的滤波器、自动编码器的隐藏层和循环神经网络(RNN)的隐状态等,来提取网络学习到的重要特征。这些重要特征可以帮助我们更好地理解网络学习到的信息,并将其应用到其他问题中。 此外,还有一种被称为知识蒸馏的技术,它通过训练一个较小的模型来提取大型模型中的知识。知识蒸馏通过引入目标函数和额外的训练策略,使小模型能够学习到大模型中的重要知识,并在不损失太多性能的情况下将其应用到实际问题中。 总而言之,提取神经网络中的知识是一项重要任务,它能够帮助我们更好地理解和应用这些复杂的模型。通过可视化、特征提取和知识蒸馏等方法,我们能够从神经网络中提取出有用的信息,并将其应用到其他领域或解决其他问题中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

说文科技

看书人不妨赏个酒钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值