1.什么是并查集?
所谓并查集就是Union + Find + Set。
2.为什么要有并查集?
2.1 为什么会有并查集?
在有些编程题中,会有这种需求:
- 求家族数
- 求一个社交网络中朋友圈的圈数
用求家族数 举例。如果我们知道子节点以及对应的父节点,如果有血缘关系的就被看做是一个家族,那么该怎么知道输入中家族的数目呢?
一般的思维是:
- 使用深度遍历,找出在同一个树中的所有节点。然后树的数目就是家族数。但是这么做极其低效。因为你需要建树,然后深搜。
在算法中,有一种较为简单的方法可以帮助我们解决这个问题,那就是并查集。如果我们有几组输入 (1,2),(1,3),(4,5)那么我们可以将其合并成 (1,2,3) 和 (4,5)。那么得到的结果就是有两个家族。但是问题关键是怎么实现这个合并 和 查找的过程呢?而且集合又该怎么体现呢?
2.2 如何实现合并过程?
- step 1:实现并查集时,使用一个初始数组
father[n],令初始情况下father[i] = i。 - step 2:针对每个输入,先进行
find操作,这个find操作是用于分别查找节点1,2的节点关系是什么。这里因为我们的输入的是父子关系,所以得到的结果就是father[1]=2,又因为father[2]=2,所以最后得到的结果就是father[1]=2 - step 3:如果此时再输入
(2,3),那么就得到father[2] = 3,又因为father[3]=3,所以最后得到的结果就是father[2]=3
这里find的过程就是:查找father[2],father[3]的过程。
这里union的过程就是:为father[1],father[2]设值的过程。
而集合就是这个数组father。
3.简单案例
3.1 需求
输入:两个整数n,m,分别代表的是总人数和待输入的父子关系。接下来输入m行,每行的数据样式是:a,b。其代表的意思是:a 是 b 的儿子。
输出:输出有多少个家族?。
3.2 代码
#include <cstdio>
#define maxn 1000
int n,m;//总人数 好朋友组数
int father[maxn];
//初始化操作
void init(){
int i;
for(i = 0;i <= n; i++){
father[i] = i;//初始化---每个节点的父节点为该节点本身
}
}
int findFather(int x){
//下面这个是循环找出最顶层的父亲
while(x != father[x]){
x = father[x];
}
return x;
}
void Union(int a,int b){
int faA = findFather(a);
int faB = findFather(b);
//是不是同一个祖先,如果是,则将faA 的祖先设置为B
if(faA != faB){
father[faA] = faB;
}
}
int main(){
int i,j;
scanf("%d %d",&n,&m);
init();
int a,b;//a与b是朋友关系
for(i = 0;i < m;i++){
scanf("%d %d",&a,&b);
Union(a,b);
}
int group = n;
for(i = 1;i<= n;i++){
printf("father[%d] = %d\n",i,father[i]);
if(father[i]!=i)
group --;
}
printf("\ngroup = %d",group);
}
3.3 测试用例
3 2
1 3
3 4
5 3
1 4
3 5
4 2
5 3
4 2
1 4
3 5
6 4
1 4
3 5
4 2
5 6
3.4 执行结果
使用测试用例:
6 4
1 4
3 5
4 2
5 6
表明这里有6个人,其中 1 是 4的儿子;3是5的儿子… 5是 6的儿子。那么最后的输出就是。这里一共有两个家庭。
而输出 的 4 2 5 2 6 6表示的意思就是:father[1] = 4… father[5] = 6,father[6] = 6

4.注意事项
4.1 这里给出需要注意的几点:
- 如何求出
group数?
我们知道,如果一个father[i]!=i则表明i节点并不是祖先节点。需要理解为什么不是使用father[i]=i的数目来判断家族数【原因是: 数组father在初始化之后形成的结果集就是对于任何的father[i] =i恒成立。在后期的union()过程只能改变部分数据,所以不能正向求家族数,只能使用group--的方式。】
4.2
下面再给出一道上题的改编题。请使用并查集求解。
- 题目
给出一个人的id, fatherId, motherId, k, child1,...childk, Mestate,Area。其中id是人的id,fatherId是该人的father的id;motherId是该人的mother id;k表示该人有k个孩子,其后紧跟着k个孩子的id。最后两项不必考虑。现在想让你求出有多少个family【有间接血缘关系的都算是一个family】? - 代码
#include<cstdio>
#include<iostream>
#include<climits>
#define maxn 1005
using namespace std;
struct family{
int id;
int father;
int mother;
int childNum;
int child[10];
int estateNum;//estate num
int area;
};
//标记每个节点的信息
struct Node{
int sun;
int isVisit = 1;//表示已访问
};
family fam[maxn];
Node node[10000];//用于标记每个节点的sun节点
//寻找根节点
int findSun(int a){
//如果节点a的 sun不是自己本身,则一直寻找
while(node[a].sun != a){
a = node[a].sun;
}
return a;
}
//合并两个节点
void unionSun(int a,int b){
int sunA = findSun(a);
int sunB = findSun(b);
node[max(sunA,sunB)].sun = min(sunA,sunB);
}
int main(){
int N;
cin >> N;
int i, j;
int childNum;
//初始化的数据
for(i = 1;i<10000;i++){
node[i].sun = i;
}
int minValue ;
for(i = 0;i< N;i++){
minValue = INT_MAX;
cin >> fam[i].id >> fam[i].father >> fam[i].mother >> childNum ;
minValue = min(minValue,fam[i].id);
node[fam[i].id].isVisit = 0;
if(fam[i].father!=-1) {
minValue = min(minValue,fam[i].father);
node[fam[i].father].isVisit = 0;
}
if(fam[i].mother!=-1){
minValue = min(minValue,fam[i].mother);
node[fam[i].mother].isVisit = 0;
}
for(j = 0;j< childNum;j++){
cin >> fam[i].child[j];
minValue = min(minValue,fam[i].child[j]);
node[fam[i].child[j]].isVisit = 0;
}
cin >> fam[i].estateNum >> fam[i].area;
//合并自身
unionSun(fam[i].id,minValue);
//合并父母
if(fam[i].father!=-1) unionSun(fam[i].father,minValue);
if(fam[i].mother!=-1) unionSun(fam[i].mother,minValue);
//合并孩子
for(j = 0;j< childNum;j++){
unionSun(fam[i].child[j], minValue);
}
}
cout <<"\nThe information of every nodes' sun:"<< "\n";
for(i = 1;i< 10000;i++){
if( findSun(i) != i && node[i].isVisit == 0){
cout << "i = "<<i<< ",node[i] = "<< node[i].sun<<"\n";
}
}
//找出有几个家庭
int familyCount = 0;
for(i = 1;i< 10000;i++){
if( node[findSun(i)].isVisit != 1 ){//表示未访问过
familyCount ++;
node[findSun(i)].isVisit = 1;
}
}
cout << "familyCount = "<<familyCount<<"\n";
}
- 测试用例
10
6666 5551 5552 1 7777 1 100
1234 5678 9012 1 0002 2 300
8888 -1 -1 0 1 1000
2468 0001 0004 1 2222 1 500
7777 6666 -1 0 2 300
3721 -1 -1 1 2333 2 150
9012 -1 -1 3 1236 1235 1234 1 100
1235 5678 9012 0 1 50
2222 1236 2468 2 6661 6662 1 300
2333 -1 3721 3 6661 6662 6663 1 100
1
2333 -1 3721 3 6661 6662 6663 1 100
5. 进阶案例
这里我使用几道简单的pat 1114的题目作为案例,进行讲解。
979

被折叠的 条评论
为什么被折叠?



