并查集详解

1.什么是并查集?

所谓并查集就是Union + Find + Set

2.为什么要有并查集?

2.1 为什么会有并查集?

在有些编程题中,会有这种需求:

  • 求家族数
  • 求一个社交网络中朋友圈的圈数

求家族数 举例。如果我们知道子节点以及对应的父节点,如果有血缘关系的就被看做是一个家族,那么该怎么知道输入中家族的数目呢?
一般的思维是:

  • 使用深度遍历,找出在同一个树中的所有节点。然后树的数目就是家族数。但是这么做极其低效。因为你需要建树,然后深搜。

在算法中,有一种较为简单的方法可以帮助我们解决这个问题,那就是并查集。如果我们有几组输入 (1,2)(1,3)(4,5)那么我们可以将其合并成 (1,2,3)(4,5)。那么得到的结果就是有两个家族。但是问题关键是怎么实现这个合并 和 查找的过程呢?而且集合又该怎么体现呢?

2.2 如何实现合并过程?

  • step 1:实现并查集时,使用一个初始数组father[n],令初始情况下father[i] = i
  • step 2:针对每个输入,先进行find操作,这个find操作是用于分别查找节点1,2的节点关系是什么。这里因为我们的输入的是父子关系,所以得到的结果就是father[1]=2,又因为father[2]=2,所以最后得到的结果就是father[1]=2
  • step 3:如果此时再输入(2,3),那么就得到father[2] = 3,又因为father[3]=3,所以最后得到的结果就是father[2]=3
    这里find的过程就是:查找father[2],father[3]的过程。
    这里union的过程就是:为father[1],father[2]设值的过程。
    而集合就是这个数组father

3.简单案例

3.1 需求

输入:两个整数n,m,分别代表的是总人数和待输入的父子关系。接下来输入m行,每行的数据样式是:a,b。其代表的意思是:a 是 b 的儿子。
输出:输出有多少个家族?。

3.2 代码

​#include <cstdio>
#define maxn 1000

int n,m;//总人数 好朋友组数
int father[maxn];

//初始化操作 
void init(){
	int i;
	for(i = 0;i <= n; i++){
		father[i] = i;//初始化---每个节点的父节点为该节点本身 
	}
}

int findFather(int x){
	//下面这个是循环找出最顶层的父亲 
	while(x != father[x]){
		x = father[x];
	}
	return x;
}

void Union(int a,int b){
	int faA = findFather(a);
	int faB = findFather(b);
	
	//是不是同一个祖先,如果是,则将faA 的祖先设置为B 
	if(faA != faB){		
		father[faA] = faB;
	}
} 

int main(){		
	int i,j;
	scanf("%d %d",&n,&m); 
	init(); 
	int a,b;//a与b是朋友关系 
	for(i = 0;i < m;i++){
		scanf("%d %d",&a,&b);
		Union(a,b);
	} 
	
	int group = n; 
	for(i = 1;i<= n;i++){
		printf("father[%d] = %d\n",i,father[i]);
		if(father[i]!=i)
			group --;
	}
	printf("\ngroup = %d",group);
	
}

3.3 测试用例

3 2
1 3 
3 4

5 3
1 4
3 5
4 2 


5 3
4 2
1 4
3 5


6 4
1 4
3 5
4 2
5 6

3.4 执行结果

使用测试用例:

6 4
1 4
3 5
4 2
5 6

表明这里有6个人,其中 1 是 4的儿子;3是5的儿子… 5是 6的儿子。那么最后的输出就是。这里一共有两个家庭。
而输出 的 4 2 5 2 6 6表示的意思就是:father[1] = 4father[5] = 6,father[6] = 6
在这里插入图片描述

4.注意事项

4.1 这里给出需要注意的几点:

  • 如何求出 group 数?
    我们知道,如果一个 father[i]!=i则表明i节点并不是祖先节点。需要理解为什么不是使用father[i]=i的数目来判断家族数【原因是: 数组 father 在初始化之后形成的结果集就是对于任何的father[i] =i恒成立。在后期的union()过程只能改变部分数据,所以不能正向求家族数,只能使用 group-- 的方式。】

4.2

下面再给出一道上题的改编题。请使用并查集求解。

  • 题目
    给出一个人的 id, fatherId, motherId, k, child1,...childk, Mestate,Area。其中id是人的id,fatherId是该人的father的id;motherId是该人的mother id;k表示该人有k个孩子,其后紧跟着k个孩子的id。最后两项不必考虑。现在想让你求出有多少个 family【有间接血缘关系的都算是一个 family】?
  • 代码
#include<cstdio>
#include<iostream>
#include<climits>
#define maxn 1005

using namespace std;

struct family{
	int id;
	int father;
	int mother;
	int childNum;
	int child[10];
	int estateNum;//estate num
	int area;	
};

//标记每个节点的信息 
struct Node{	
	int sun;
	int isVisit = 1;//表示已访问 
}; 

family fam[maxn];
Node node[10000];//用于标记每个节点的sun节点 

//寻找根节点 
int findSun(int a){
	//如果节点a的 sun不是自己本身,则一直寻找 
	while(node[a].sun != a){
		a = node[a].sun; 
	}
	return a;	 
} 

//合并两个节点
void unionSun(int a,int b){
	int sunA = findSun(a);
	int sunB = findSun(b);
	node[max(sunA,sunB)].sun = min(sunA,sunB);
}

int main(){
	int N;
	cin >> N;
	int i, j;
	int childNum;	
	
	//初始化的数据 
	for(i = 1;i<10000;i++){
		node[i].sun = i;		
	}
	
	int minValue ; 
	for(i = 0;i< N;i++){
		minValue = INT_MAX;
		cin >> fam[i].id >> fam[i].father >> fam[i].mother >> childNum ;
		minValue = min(minValue,fam[i].id);
		node[fam[i].id].isVisit  = 0;
		if(fam[i].father!=-1) {
			minValue = min(minValue,fam[i].father);
			node[fam[i].father].isVisit  = 0;		
		}
		if(fam[i].mother!=-1){
			minValue = min(minValue,fam[i].mother);
			node[fam[i].mother].isVisit  = 0;	
		}
		
		for(j = 0;j< childNum;j++){
			cin >> fam[i].child[j];
			minValue = min(minValue,fam[i].child[j]);
			node[fam[i].child[j]].isVisit  = 0;	
		}
		cin >> fam[i].estateNum >> fam[i].area;			
		
		//合并自身 
		unionSun(fam[i].id,minValue);	
		
		//合并父母 
		if(fam[i].father!=-1)  unionSun(fam[i].father,minValue);
		if(fam[i].mother!=-1)  unionSun(fam[i].mother,minValue);
		
		//合并孩子 
		for(j = 0;j< childNum;j++){
			unionSun(fam[i].child[j], minValue);
		}		
	}

	cout <<"\nThe information of every nodes' sun:"<< "\n";
	for(i = 1;i< 10000;i++){
		if( findSun(i) != i && node[i].isVisit == 0){
			cout << "i = "<<i<< ",node[i] = "<< node[i].sun<<"\n";
		}
	}
	
	//找出有几个家庭
	int familyCount = 0; 
	for(i = 1;i< 10000;i++){
		if( node[findSun(i)].isVisit != 1 ){//表示未访问过 
			familyCount ++;
			node[findSun(i)].isVisit = 1; 
		}
	} 
	cout << "familyCount = "<<familyCount<<"\n";
}
  • 测试用例
10
6666 5551 5552 1 7777 1 100
1234 5678 9012 1 0002 2 300
8888 -1 -1 0 1 1000
2468 0001 0004 1 2222 1 500
7777 6666 -1 0 2 300
3721 -1 -1 1 2333 2 150
9012 -1 -1 3 1236 1235 1234 1 100
1235 5678 9012 0 1 50
2222 1236 2468 2 6661 6662 1 300
2333 -1 3721 3 6661 6662 6663 1 100

1
2333 -1 3721 3 6661 6662 6663 1 100

5. 进阶案例

这里我使用几道简单的pat 1114的题目作为案例,进行讲解。

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

说文科技

看书人不妨赏个酒钱?

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值