Function
Time Limit: 20000/10000 MS (Java/Others)
Memory Limit: 32768/32768 K (Java/Others)
Problem Description
学皇最近发明了一种新的玩具––学皇筛。他对于最大公约数为 111 的数对特别着迷,想知道满足以下奇妙性质的 nnn 的因子集合。记 nnn 的一个因子为 ttt,若 ttt 与 nt\frac nttn 的最大公约数为 1,则称 nnn 的这个因子为“有趣的”。X 同学已经很熟练地掌握了如何求 nnn 的所有“有趣”因子的和了(记为 f(n)f(n)f(n)),但他想知道 S(n)=f(1)+f(2)+...+f(n)S(n)=f(1)+f(2)+...+f(n)S(n)=f(1)+f(2)+...+f(n) 是多少。他觉得累加所有的fff很枯燥,于是询问是否有快速的方法求 S(N)S(N)S(N)。
Input
第一行一个整数 test(1≤test≤10)test(1≤test≤10)test(1≤test≤10) 表示数据组数。
接下来 testtesttest 行,每行含一个正整数 N(1≤N≤1012)N(1≤N≤10^{12})N(1≤N≤1012)。
Output
对于每组数据,一行一个整数,表示 S(n)S(n)S(n)。由于答案可能很大,输出答案模 109+710^9+7109+7 后的值即可。
Sample Input
3
1
10
100
Sample Output
1
76
6889
思路:因为n≤1012n\le 10^{12}n≤1012,那么我们应该计算出[1,⌊n⌋][1,\lfloor\sqrt{n}\rfloor][1,⌊n⌋]里每个数作为因子对答案的贡献。
对于任意因子i(1≤i≤⌊n⌋)i(1\le i\le \lfloor\sqrt{n}\rfloor)i(1≤i≤⌊n⌋),假设cal(i,m)cal(i,m)cal(i,m)为iii在区间[1,m][1,m][1,m]的贡献,我们只需求出[1,m][1,m][1,m]中与iii互质的数的个数cntcntcnt以及他们的和sumsumsum,那么iii对答案的贡献即是i∗cnt+sumi*cnt+sumi∗cnt+sum。
考虑去重以及乘积范围,我们所求互质数的所在区间应为[i+1,⌊ni⌋][i+1,\lfloor\frac n i\rfloor][i+1,⌊in⌋],及iii对答案的贡献应为cal(i,⌊ni⌋)−cal(i,i),其中i∈[1,⌊n⌋]cal(i,\lfloor\frac n i\rfloor)-cal(i,i),其中i\in[1,\lfloor\sqrt{n}\rfloor]cal(i,⌊in⌋)−cal(i,i),其中i∈[1,⌊n⌋]。
现在只需要求出cal(i,j)cal(i,j)cal(i,j)即可,容斥即可解决。
但是对[1,106][1,10^6][1,106]内的每个数做容斥的复杂度还是有点太高,考虑到每个数容斥所需要的因子其实大部分都是重复的,可以用类似素数筛的方法对容斥进行优化,代码如下。
#include<bits/stdc++.h>
using namespace std;
const int MOD=1e9+7;
const int N=1000000;
typedef long long ll;
int v[N+10],cnt[N+10];
void init()
{
memset(cnt,0,sizeof cnt);
for(int i=2;i<=N;i++)
{
if(v[i])continue;
for(int j=i;j<=N;j+=i)
{
v[j]=1;
cnt[j]++;
}
}
memset(v,0,sizeof v);
for(int i=2;i<=N;i++)
{
if(v[i])continue;
for(int j=2*i;j<=N;j+=i)
{
if((j/i)%i==0)v[j]=1;
}
}
}
ll cal(ll i,ll m,ll j)
{
ll cnt = (m/i)%MOD;
ll sum = (i+cnt*i%MOD)%MOD*cnt%MOD*500000004%MOD;
return (cnt*j%MOD+sum)%MOD;
}
int main()
{
init();
int T;
cin>>T;
while(T--)
{
ll n;
scanf("%lld",&n);
ll ans=n%MOD-1+(1+n)%MOD*(n%MOD)%MOD*500000004%MOD;
ans=(ans%MOD+MOD)%MOD;
for(ll i=2;i*i<=n;i++)
{
ans+=(n/i-i)%MOD*i%MOD+(i+1+n/i)%MOD*((n/i-i)%MOD)%MOD*500000004%MOD;
ans=(ans%MOD+MOD)%MOD;
}
for(ll i=2;i*i<=n;i++)
{
if(v[i])continue;
ll tmp = 0;
for(ll j=i;j*j<=n;j+=i)
{
tmp+=(cal(i,n/j,j)-cal(i,j,j)+MOD)%MOD;
tmp%=MOD;
}
if(cnt[i]%2)ans-=tmp;
else ans+=tmp;
ans=(ans%MOD+MOD)%MOD;
}
printf("%lld\n",ans);
}
return 0;
}