HDU-6750:Function(容斥)

这篇博客介绍了如何快速计算在一定范围内,所有最大公约数为111的数对之和的算法。通过优化容斥原理,避免了对每个数直接进行因子分解,降低了复杂度。作者提供了C++代码实现,展示了如何利用素数筛和快速计算贡献值的方法,以解决大规模数据下的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Function
Time Limit: 20000/10000 MS (Java/Others)
Memory Limit: 32768/32768 K (Java/Others)

Problem Description
学皇最近发明了一种新的玩具––学皇筛。他对于最大公约数为 111 的数对特别着迷,想知道满足以下奇妙性质的 nnn 的因子集合。记 nnn 的一个因子为 ttt,若 tttnt\frac nttn 的最大公约数为 1,则称 nnn 的这个因子为“有趣的”。X 同学已经很熟练地掌握了如何求 nnn 的所有“有趣”因子的和了(记为 f(n)f(n)f(n)),但他想知道 S(n)=f(1)+f(2)+...+f(n)S(n)=f(1)+f(2)+...+f(n)S(n)=f(1)+f(2)+...+f(n) 是多少。他觉得累加所有的fff很枯燥,于是询问是否有快速的方法求 S(N)S(N)S(N)

Input
第一行一个整数 test(1≤test≤10)test(1≤test≤10)test(1test10) 表示数据组数。

接下来 testtesttest 行,每行含一个正整数 N(1≤N≤1012)N(1≤N≤10^{12})N(1N1012)

Output
对于每组数据,一行一个整数,表示 S(n)S(n)S(n)。由于答案可能很大,输出答案模 109+710^9+7109+7 后的值即可。

Sample Input
3
1
10
100

Sample Output
1
76
6889

思路:因为n≤1012n\le 10^{12}n1012,那么我们应该计算出[1,⌊n⌋][1,\lfloor\sqrt{n}\rfloor][1,n]里每个数作为因子对答案的贡献。
对于任意因子i(1≤i≤⌊n⌋)i(1\le i\le \lfloor\sqrt{n}\rfloor)i(1in),假设cal(i,m)cal(i,m)cal(i,m)iii在区间[1,m][1,m][1,m]的贡献,我们只需求出[1,m][1,m][1,m]中与iii互质的数的个数cntcntcnt以及他们的和sumsumsum,那么iii对答案的贡献即是i∗cnt+sumi*cnt+sumicnt+sum
考虑去重以及乘积范围,我们所求互质数的所在区间应为[i+1,⌊ni⌋][i+1,\lfloor\frac n i\rfloor][i+1,in],及iii对答案的贡献应为cal(i,⌊ni⌋)−cal(i,i),其中i∈[1,⌊n⌋]cal(i,\lfloor\frac n i\rfloor)-cal(i,i),其中i\in[1,\lfloor\sqrt{n}\rfloor]cal(i,in)cal(i,i),i[1,n]
现在只需要求出cal(i,j)cal(i,j)cal(i,j)即可,容斥即可解决。
但是对[1,106][1,10^6][1,106]内的每个数做容斥的复杂度还是有点太高,考虑到每个数容斥所需要的因子其实大部分都是重复的,可以用类似素数筛的方法对容斥进行优化,代码如下。

#include<bits/stdc++.h>
using namespace std;
const int MOD=1e9+7;
const int N=1000000;
typedef long long ll;
int v[N+10],cnt[N+10];
void init()
{
    memset(cnt,0,sizeof cnt);
    for(int i=2;i<=N;i++)
    {
        if(v[i])continue;
        for(int j=i;j<=N;j+=i)
        {
            v[j]=1;
            cnt[j]++;
        }
    }
    memset(v,0,sizeof v);
    for(int i=2;i<=N;i++)
    {
        if(v[i])continue;
        for(int j=2*i;j<=N;j+=i)
        {
            if((j/i)%i==0)v[j]=1;
        }
    }
}
ll cal(ll i,ll m,ll j)
{
    ll cnt = (m/i)%MOD;
    ll sum = (i+cnt*i%MOD)%MOD*cnt%MOD*500000004%MOD;
    return (cnt*j%MOD+sum)%MOD;
}
int main()
{
    init();
    int T;
    cin>>T;
    while(T--)
    {
        ll n;
        scanf("%lld",&n);
        ll ans=n%MOD-1+(1+n)%MOD*(n%MOD)%MOD*500000004%MOD;
        ans=(ans%MOD+MOD)%MOD;
        for(ll i=2;i*i<=n;i++)
        {
            ans+=(n/i-i)%MOD*i%MOD+(i+1+n/i)%MOD*((n/i-i)%MOD)%MOD*500000004%MOD;
            ans=(ans%MOD+MOD)%MOD;
        }
        for(ll i=2;i*i<=n;i++)
        {
            if(v[i])continue;
            ll tmp = 0;
            for(ll j=i;j*j<=n;j+=i)
            {
                tmp+=(cal(i,n/j,j)-cal(i,j,j)+MOD)%MOD;
                tmp%=MOD;
            }
            if(cnt[i]%2)ans-=tmp;
            else ans+=tmp;
            ans=(ans%MOD+MOD)%MOD;
        }
        printf("%lld\n",ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值