Wannafly交流赛1-D:迷宫2(优先队列+BFS)

本文介绍了一种通过改变迷宫中的特殊路径来阻止角色达到终点的算法。利用BFS搜索和优先队列来寻找最短路径,从而确定将哪些特殊路径转化为障碍物的成本最低。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld

题目描述

这是一个关于二维格子状迷宫的题目。迷宫的大小为N*M,左上角格子座标为(1,1)、右上角格子座标为(1,M)、左下角格子座标为(N,1)、右下角格子座标为(N,M)。每一格都用-1到109之间的整数表示,意义分别为:-1为墙壁,0为走道,而1到109之间的正整数代表特殊的走道。
蜥蜴最初位于迷宫的座标(1,1)的格子,每一步蜥蜴只能往上、下、左、右、左上、右上、左下、右下八个方向之一前进一格,并且,他也不能走出迷宫边界。蜥蜴的目的地是走到迷宫的右下角格子,也就是座标位置(N,M)。我们想要动一些手脚,使得蜥蜴没有办法从(1,1)出发并抵达(N,M)。我们学会了一个邪恶的法术,这个法术可以把特殊的走道变成墙壁,施法一次的代价为表示该特殊走道的正整数。
假设,我们可以在蜥蜴出发之前不限次数的使用这个邪恶的法术,所花的总代价即为每次施法代价的总和,蜥蜴出发之后就不能再使用这个法术了,请问让蜥蜴没办法达到终点所必须花费的最小总代价是多少呢?
注意,0所代表的走道是无法变为墙壁的。

输入描述:

输入的第一行有三个正整数Q,N,M。
代表接下来有Q组数据,这Q组数据都是N*M的迷宫。
接下来每组数据各N行,代表一个迷宫,每行各M个整数,第i行中的第j个整数代表迷宫座标(i,j)的格子。

输出描述:

每一组数据输出一行,如果无论如何蜥蜴都能到达终点,请在这一行中输出-1,否则请在这一行中输出一个代表答案的整数。
示例1

输入

3 3 3
0 2 2
3 2 3
2 2 0
0 1 2
-1 1 -1
2 1 0
0 1 2
0 0 0
2 1 0

输出

6
1
-1

备注:

1<=Q<=5*103
1<=Q*N*M<=2.5*105
1<=N,M<=500
代表迷宫格子的数字为介于-1和109间的整数(包含-1和109)
每个迷宫中,代表座标(1,1)和(N,M)的格子的数字一定是0
思路:可以找到一条从 右边界或上边界--->左边界或下边界的 花费最少的路线,把这条路线上的格子变为墙就可以满足题意了。那么考虑BFS,因为要求花费最少,可以用优先队列加速。
#include<bits/stdc++.h>
using namespace std;
const int MAX=1e5;
const int MOD=1e9+7;
typedef long long ll;
struct lenka
{
    int x,y;
    ll cost;
    int operator<(const lenka& t)const{return t.cost<cost;}
};
priority_queue<lenka>p;
ll d[510][510],a[600][600];
int n,m;
int dis[4][2]={-1,0,0,-1,1,0,0,1};
ll bfs()
{
    ll ans=-1;
    while(!p.empty())
    {
        lenka now=p.top();p.pop();
        if(now.x==n||now.y==1)
        {
            if(ans==-1)ans=now.cost;
            ans=min(ans,now.cost);
            continue;
        }
        for(int i=0;i<4;i++)
        {
            int x=now.x+dis[i][0];
            int y=now.y+dis[i][1];
            if(x>=1&&x<=n&&y>=1&&y<=m&&a[x][y]!=0)
            {
                if(a[x][y]==-1)
                {
                    if(d[x][y]==-1||d[x][y]>now.cost)
                    {
                        d[x][y]=now.cost;
                        p.push((lenka){x,y,d[x][y]});
                    }
                }
                else
                {
                    if(d[x][y]==-1||d[x][y]>now.cost+a[x][y])
                    {
                        d[x][y]=now.cost+a[x][y];
                        p.push((lenka){x,y,d[x][y]});
                    }
                }
            }
        }
    }
    return ans;
}
int main()
{
    int T;cin>>T>>n>>m;
    while(T--)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=m;j++)scanf("%lld",&a[i][j]);
        }
        memset(d,-1,sizeof d);
        for(int j=1;j<=m;j++)
        {
            if(a[1][j]!=0)
            {
                d[1][j]=(a[1][j]==-1?0:a[1][j]);
                p.push((lenka){1,j,d[1][j]});
            }
        }
        for(int i=2;i<=n;i++)
        {
            if(a[i][m]!=0)
            {
                d[i][m]=(a[i][m]==-1?0:a[i][m]);
                p.push((lenka){i,m,d[i][m]});
            }
        }
        printf("%lld\n",bfs());
    }
    return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值