时间限制:C/C++ 1秒,其他语言2秒
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
空间限制:C/C++ 262144K,其他语言524288K
64bit IO Format: %lld
题目描述
这是一个关于二维格子状迷宫的题目。迷宫的大小为N*M,左上角格子座标为(1,1)、右上角格子座标为(1,M)、左下角格子座标为(N,1)、右下角格子座标为(N,M)。每一格都用-1到109之间的整数表示,意义分别为:-1为墙壁,0为走道,而1到109之间的正整数代表特殊的走道。
蜥蜴最初位于迷宫的座标(1,1)的格子,每一步蜥蜴只能往上、下、左、右、左上、右上、左下、右下八个方向之一前进一格,并且,他也不能走出迷宫边界。蜥蜴的目的地是走到迷宫的右下角格子,也就是座标位置(N,M)。我们想要动一些手脚,使得蜥蜴没有办法从(1,1)出发并抵达(N,M)。我们学会了一个邪恶的法术,这个法术可以把特殊的走道变成墙壁,施法一次的代价为表示该特殊走道的正整数。
假设,我们可以在蜥蜴出发之前不限次数的使用这个邪恶的法术,所花的总代价即为每次施法代价的总和,蜥蜴出发之后就不能再使用这个法术了,请问让蜥蜴没办法达到终点所必须花费的最小总代价是多少呢?
注意,0所代表的走道是无法变为墙壁的。
蜥蜴最初位于迷宫的座标(1,1)的格子,每一步蜥蜴只能往上、下、左、右、左上、右上、左下、右下八个方向之一前进一格,并且,他也不能走出迷宫边界。蜥蜴的目的地是走到迷宫的右下角格子,也就是座标位置(N,M)。我们想要动一些手脚,使得蜥蜴没有办法从(1,1)出发并抵达(N,M)。我们学会了一个邪恶的法术,这个法术可以把特殊的走道变成墙壁,施法一次的代价为表示该特殊走道的正整数。
假设,我们可以在蜥蜴出发之前不限次数的使用这个邪恶的法术,所花的总代价即为每次施法代价的总和,蜥蜴出发之后就不能再使用这个法术了,请问让蜥蜴没办法达到终点所必须花费的最小总代价是多少呢?
注意,0所代表的走道是无法变为墙壁的。
输入描述:
输入的第一行有三个正整数Q,N,M。 代表接下来有Q组数据,这Q组数据都是N*M的迷宫。 接下来每组数据各N行,代表一个迷宫,每行各M个整数,第i行中的第j个整数代表迷宫座标(i,j)的格子。
输出描述:
每一组数据输出一行,如果无论如何蜥蜴都能到达终点,请在这一行中输出-1,否则请在这一行中输出一个代表答案的整数。
示例1
输入
3 3 3 0 2 2 3 2 3 2 2 0 0 1 2 -1 1 -1 2 1 0 0 1 2 0 0 0 2 1 0
输出
6 1 -1
备注:
1<=Q<=5*103 1<=Q*N*M<=2.5*105 1<=N,M<=500 代表迷宫格子的数字为介于-1和109间的整数(包含-1和109) 每个迷宫中,代表座标(1,1)和(N,M)的格子的数字一定是0思路:可以找到一条从 右边界或上边界--->左边界或下边界的 花费最少的路线,把这条路线上的格子变为墙就可以满足题意了。那么考虑BFS,因为要求花费最少,可以用优先队列加速。
#include<bits/stdc++.h>
using namespace std;
const int MAX=1e5;
const int MOD=1e9+7;
typedef long long ll;
struct lenka
{
int x,y;
ll cost;
int operator<(const lenka& t)const{return t.cost<cost;}
};
priority_queue<lenka>p;
ll d[510][510],a[600][600];
int n,m;
int dis[4][2]={-1,0,0,-1,1,0,0,1};
ll bfs()
{
ll ans=-1;
while(!p.empty())
{
lenka now=p.top();p.pop();
if(now.x==n||now.y==1)
{
if(ans==-1)ans=now.cost;
ans=min(ans,now.cost);
continue;
}
for(int i=0;i<4;i++)
{
int x=now.x+dis[i][0];
int y=now.y+dis[i][1];
if(x>=1&&x<=n&&y>=1&&y<=m&&a[x][y]!=0)
{
if(a[x][y]==-1)
{
if(d[x][y]==-1||d[x][y]>now.cost)
{
d[x][y]=now.cost;
p.push((lenka){x,y,d[x][y]});
}
}
else
{
if(d[x][y]==-1||d[x][y]>now.cost+a[x][y])
{
d[x][y]=now.cost+a[x][y];
p.push((lenka){x,y,d[x][y]});
}
}
}
}
}
return ans;
}
int main()
{
int T;cin>>T>>n>>m;
while(T--)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=m;j++)scanf("%lld",&a[i][j]);
}
memset(d,-1,sizeof d);
for(int j=1;j<=m;j++)
{
if(a[1][j]!=0)
{
d[1][j]=(a[1][j]==-1?0:a[1][j]);
p.push((lenka){1,j,d[1][j]});
}
}
for(int i=2;i<=n;i++)
{
if(a[i][m]!=0)
{
d[i][m]=(a[i][m]==-1?0:a[i][m]);
p.push((lenka){i,m,d[i][m]});
}
}
printf("%lld\n",bfs());
}
return 0;
}