hihocoder#1702 : 矩阵迷宫(DP)

本文介绍了一种求解迷宫中最小代价路径的问题,利用动态规划方法解决了一个NxN的方格矩阵迷宫中寻找从左上角到右下角最小代价路径的问题。考虑到了路径上的数字和以及转向成本。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

时间限制:10000ms
单点时限:1000ms
内存限制:256MB

描述

给定一个NxN的方格矩阵迷宫,每个格子中都有一个整数Aij。最初小Hi位于迷宫左上角的格子A11,他每一步可以向右或向下移动,目标是移动到迷宫的出口——右下角ANN。  

小Hi需要支付的代价包括路径中经过的所有格子中的整数之和,以及改变移动方向需要支付的代价。  

小Hi第一次改变方向的代价是1,第二次的代价是2,第三次的代价是4,…… 第K次的代价是2K-1。  

请你帮小Hi算出要离开迷宫代价最小的路径,并输出要支付的代价。

输入

第一行一个整数N。  (1 ≤ N ≤ 100)  

以下N行每行N个整数,代表矩阵A。  (1 ≤ Aij ≤ 100)

输出

从左上角到右下角路径的最小的代价。

样例输入
3  
1 3 5  
1 1 2  
5 1 1
样例输出
9
思路:DP。d[dir][i][j][k]表示到达(i,j)这点时,方向为dir(向下或向右)且已经转弯转了k次的最小代价。因为总花费不会超过A[i][j]*200<=20000<=2^20。所以只需要枚举k<=20时的状态就行了。
#include<bits/stdc++.h>
using namespace std;
const double PI=acos(-1);
const int MOD=1000000009;
const int MAX=1e6;
typedef long long ll;
ll a[200][200],f[20];
ll d[2][200][200][22];
int main()
{
    int n;
    f[0]=1;
    for(int i=1;i<=20;i++)f[i]=f[i-1]*2;
    while(cin>>n)
    {
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)scanf("%lld",&a[i][j]);
        }
        memset(d,-1,sizeof d);
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                if(i==1&&j==1)
                {
                    d[0][1][1][0]=a[1][1];
                    d[1][1][1][0]=a[1][1];
                    continue;
                }
                for(int k=0;k<=20;k++)
                {
                    if(d[0][i][j][k]==-1)d[0][i][j][k]=1e15;
                    if(d[0][i][j][k+1]==-1)d[0][i][j][k+1]=1e15;
                    if(d[1][i][j][k]==-1)d[1][i][j][k]=1e15;
                    if(d[1][i][j][k+1]==-1)d[1][i][j][k+1]=1e15;
                    if(d[0][i-1][j][k]!=-1)d[0][i][j][k]=min(d[0][i][j][k],d[0][i-1][j][k]+a[i][j]);
                    if(d[1][i-1][j][k]!=-1)d[0][i][j][k+1]=min(d[0][i][j][k+1],d[1][i-1][j][k]+a[i][j]+f[k]);
                    if(d[0][i][j-1][k]!=-1)d[1][i][j][k+1]=min(d[1][i][j][k+1],d[0][i][j-1][k]+a[i][j]+f[k]);
                    if(d[1][i][j-1][k]!=-1)d[1][i][j][k]=min(d[1][i][j][k],d[1][i][j-1][k]+a[i][j]);
                }
            }
        }
        ll ans=1e18;
        for(int i=0;i<=20;i++)
        {
            if(d[0][n][n][i]!=-1)ans=min(ans,d[0][n][n][i]);
            if(d[1][n][n][i]!=-1)ans=min(ans,d[1][n][n][i]);
        }
        cout<<ans<<endl;
    }
    return 0;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值