时间限制:10000ms
单点时限:1000ms
内存限制:256MB
描述
给定一个NxN的方格矩阵迷宫,每个格子中都有一个整数Aij。最初小Hi位于迷宫左上角的格子A11,他每一步可以向右或向下移动,目标是移动到迷宫的出口——右下角ANN。
小Hi需要支付的代价包括路径中经过的所有格子中的整数之和,以及改变移动方向需要支付的代价。
小Hi第一次改变方向的代价是1,第二次的代价是2,第三次的代价是4,…… 第K次的代价是2K-1。
请你帮小Hi算出要离开迷宫代价最小的路径,并输出要支付的代价。
输入
第一行一个整数N。 (1 ≤ N ≤ 100)
以下N行每行N个整数,代表矩阵A。 (1 ≤ Aij ≤ 100)
输出
从左上角到右下角路径的最小的代价。
3 1 3 5 1 1 2 5 1 1样例输出
9思路:DP。d[dir][i][j][k]表示到达(i,j)这点时,方向为dir(向下或向右)且已经转弯转了k次的最小代价。因为总花费不会超过A[i][j]*200<=20000<=2^20。所以只需要枚举k<=20时的状态就行了。
#include<bits/stdc++.h>
using namespace std;
const double PI=acos(-1);
const int MOD=1000000009;
const int MAX=1e6;
typedef long long ll;
ll a[200][200],f[20];
ll d[2][200][200][22];
int main()
{
int n;
f[0]=1;
for(int i=1;i<=20;i++)f[i]=f[i-1]*2;
while(cin>>n)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)scanf("%lld",&a[i][j]);
}
memset(d,-1,sizeof d);
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==1&&j==1)
{
d[0][1][1][0]=a[1][1];
d[1][1][1][0]=a[1][1];
continue;
}
for(int k=0;k<=20;k++)
{
if(d[0][i][j][k]==-1)d[0][i][j][k]=1e15;
if(d[0][i][j][k+1]==-1)d[0][i][j][k+1]=1e15;
if(d[1][i][j][k]==-1)d[1][i][j][k]=1e15;
if(d[1][i][j][k+1]==-1)d[1][i][j][k+1]=1e15;
if(d[0][i-1][j][k]!=-1)d[0][i][j][k]=min(d[0][i][j][k],d[0][i-1][j][k]+a[i][j]);
if(d[1][i-1][j][k]!=-1)d[0][i][j][k+1]=min(d[0][i][j][k+1],d[1][i-1][j][k]+a[i][j]+f[k]);
if(d[0][i][j-1][k]!=-1)d[1][i][j][k+1]=min(d[1][i][j][k+1],d[0][i][j-1][k]+a[i][j]+f[k]);
if(d[1][i][j-1][k]!=-1)d[1][i][j][k]=min(d[1][i][j][k],d[1][i][j-1][k]+a[i][j]);
}
}
}
ll ans=1e18;
for(int i=0;i<=20;i++)
{
if(d[0][n][n][i]!=-1)ans=min(ans,d[0][n][n][i]);
if(d[1][n][n][i]!=-1)ans=min(ans,d[1][n][n][i]);
}
cout<<ans<<endl;
}
return 0;
}