Anaconda 安装与虚拟环境创建完整指南

Anaconda 安装与虚拟环境创建完整指南

Anaconda 是目前最流行的 Python 和数据科学工具集之一,它不仅可以轻松管理 Python 包,还能提供强大的虚拟环境功能,避免项目之间的依赖冲突。如果你是机器学习、数据科学或计算机视觉的开发者,那么 Anaconda 是你的首选工具。

在这篇博客中,我们将从零开始,详细介绍如何下载、安装 Anaconda,并创建虚拟环境,帮助你快速搭建开发环境。


一、什么是 Anaconda?为什么需要它?

1.1 Anaconda 简介

Anaconda 是一个开源的 Python 和 R 语言分发工具,包含了丰富的科学计算库(如 NumPy、SciPy、Pandas)和深度学习框架(如 TensorFlow、PyTorch)。Anaconda 的主要特性包括:

  • 虚拟环境管理:可以创建隔离的开发环境,避免不同项目之间的依赖冲突。
  • 内置包管理器:通过 conda 命令,可以快速安装和更新所需的库。
  • 支持多操作系统:适用于 Windows、macOS 和 Linux。

1.2 为什么需要 Anaconda?

在开发多视角三维点云重建、深度学习等复杂项目时,经常需要多个 Python 包和工具。如果我们直接在系统环境中安装,可能会因为版本冲突导致项目运行失败。而 Anaconda 提供了以下优势:

  • 可以独立管理每个项目的依赖库和 Python 版本。
  • 提供开箱即用的科学计算工具和 Jupy
### Linux MATLAB 安装无法创建 `/usr/local/MATLAB/R2022b` 文件夹解决方案 当遇到在Linux系统上安装MATLAB时无法创建目标文件夹的情况,通常是因为权限不足或指定位置已存在同名文件夹。可以考虑更改安装路径到具有写入权限的位置。 #### 更改安装目录方法 如果默认路径 `/usr/local/MATLAB/R2022b` 创建失败,可以选择自定义安装路径来规避此问题。启动MATLAB安装程序后,在选择安装产品页面之前会有一个选项允许修改安装位置[^1]。 对于希望保持软件集中管理又不具备根目录下操作权限的用户来说,建议选取家目录下的子文件夹作为新的安装点,比如 `~/software/MATLAB_R2022b/` 。这样做不仅能够绕过可能存在的权限障碍,还便于后续版本更新和个人数据备份工作。 另外一种情况是由于磁盘空间不足导致无法完成文件夹建立,则需清理存储设备释放足够的可用容量后再尝试重新安装过程[^2]。 为了确保顺利完成整个设置流程,请确认所选的新地址满足以下条件: - 用户对该路径拥有读取、写入以及执行权限; - 所处分区有足够的剩余空间容纳即将部署的内容; - 路径名称不含特殊字符以免引起不必要的麻烦; 最后按照正常步骤继续安装向导直至结束即可成功避开原生错误提示并实现应用程序的有效配置。 ```bash # 检查当前用户的权限状态 ls -ld ~/software/ # 如果不存在则创建新文件夹 mkdir -p ~/software/MATLAB_R2022b/ ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值