《算法竞赛进阶指南》-AcWing-96. 奇怪的汉诺塔-题解

本文解析了如何将经典汉诺塔问题拓展到4根柱子,介绍了如何通过递推公式解决n个盘子从A到D的最少步数问题,并提供了相关代码实现。关键在于理解如何利用多出的柱子进行分步骤移动。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

费解的开关

传送门

题目描述

参考正常的汉诺塔问题(3根柱子),现在变成4根。

把n个盘子从A移动到D上至少需要多少步?

输入:没有输入
输出:输出12行,第i行是i个盘子至少需要几步

问题分析

正常3根柱子的汉诺塔递推公式是three[i]=three[i-1]*2+1,其中three[i]代表i个盘子至少需要多少步。

现在多了一根柱子,我们可以选择先把n个盘子中最上面的j个从A移动到B上(可用4根柱子),再把下面的n-j个盘子从A移动到D上(不能用柱子B,相当于3根柱子),再把B上的j个盘子移动到D上(可用使用4根柱子)

用four[i]代表i个盘子从A到D的最小次数,four[i]初始值“无穷大”,four[0]=0(0个盘子移动步数至少为0),递推公式four[i]=min{four[j-1]*2+three[i-j]},其中j是0~i的正整数。

代码如下:

#include <iostream>
#include <string.h> // 包含memset
using namespace std;
typedef long long ll;
ll three[13]={0};
ll four[13];
int main()
{
    int n;
    for(int i=1;i<=12;i++)
        three[i]=three[i-1]*2+1;
    memset(four, 0x3f, sizeof(four));
    four[0]=0;
    for(int i=1;i<=12;i++) // 求four[i]
    {
        for(int j=0;j<=i;j++) // 把前j个盘子移动到B上
        {
            four[i]=min(four[i],four[j]*2+three[i-j]);
        }
        cout<<four[i]<<endl;
    }
    return 0;
}

原创不易,转载请附上原文链接哦~
Tisfy:https://letmefly.blog.csdn.net/article/details/119275289

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tisfy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值