轻量级 LLM 互动系统「Gemma Chatbot」

Gemma Chatbot 🦙。这是一套基于 Google 的 Gemma 模型、支持本地推理、C++ 与 Python 核心开发,使用 Gradio 构建前端交互介面,集多语言、即时参数调整、聊天记录与多模态支援于一身的轻量级 LLM 聊天框架。

专案背景与定位

Gemma Chatbot 的设计:

  • 轻量本地部署:不依赖云端 API,搭配 llama.cpp 运行 Gemma 模型,真正实现私有化 LLM。

  • 面向研发人员:无论是调参实验、Prompt 设计还是前端集成测试,都能快速启动。

  • 开箱即用:一键启动 Gradio 前端,内置多语言支持与参数调节 UI。

  • 易于扩展:代码结构清晰,支持模组化扩充,例如多角色 Prompt、RAG 插件等。

技术选型与架构概览

整个系统架构分为三层:

模块

技术组件

说明

前端 UI

Gradio + HTML

建立用户与模型之间的交互介面

应用逻辑层

Python(Flask / Gradio Blocks)

控制参数设定、日志记录、聊天历史管理等

推理引擎层

llama.cpp + gguf 格式 Gemma 模型

提供本地化推理能力,通过 HTTP API 接入

多語言 + 多場景,LLM

Gemma Chatbot 内建中文、英文、日文、韩文介面,并且每个语种都对应专属的 system prompt,可快速切换模型语境风格:

你是一位聪明且谦虚的语言模型助手,请用简体中文作答。
You are a helpful and humble language model assistant.

场景模式方面,提供三组预设参数调配方案:

模式

特点

💬 聊天模式

回应自然、保守,适合日常问答

🎨 创作模式

高随机性,适合写小说/改写/生成文案等场景

💻 编程模式

保守风格但上下文长度扩展,适用于程式码生成与

特色功能一览

  • 即时参数控制:随时调整 temperature / top-p / mirostat 等推理参数

  • 自动保存对话记录:每次对话自动生成 jsonl 档案

  • 模型后端独立:可接入任意提供 /completion 的推理服务(如 llama.cpp / vLLM / RWKV 等)

  • REST API 支援:方便嵌入你自己的 AI 系统或机器人服务

项目结构简介

  • gradio_llama_chat.py:Gradio 主 UI 与交互逻辑

  • llama-server.log:服务端日志文件

  • chat_config.json:推理参数保存文件

  • lang_config.json:界面语言设置保存

  • chat_logs_*.jsonl:对话记录

  • LLM 推理 API 默认连接到 http://localhost:8080/completion

✅ 请确保 llama-server 已启动,并监听在 8080 端口

如何部署?

# 安装 Gradio
pip install gradio

# 启动本地伺服器
python gradio_llama_chat.py

请务必确保 llama-server 已启动,并监听 http://localhost:8080/completion 接口。建议搭配支持 Gemma 模型的 QAT 版本(例如:Gemma 3B / 7B Q4_K_M / Q6_K)。

模型与参数推荐

使用者可依需求自定义:

{
  "temperature": 0.7,
  "top_p": 0.9,
  "max_tokens": 256,
  "mirostat": 0
}

截图

下一步规划

這套系统目前仍在快速开发中,后续将会加入:

  • 🔗 接入 RAG 检索系统(例如 faiss + 自建知识库)

  • 🧑‍💼 多用户切换与身份登入

  • 🧠 Prompt 导图与角色人格设计模块

  • 📊 推理效能与 token 用量统计视觉化

开源地址

🧾 GitCode 開源項目地址:

👉 GitCode - 全球开发者的开源社区,开源代码托管平台

我是一位独立开发者,加入使用者社群,一起讨论私有化 LLM 与 RAG 架构实践,欢迎 Star、Fork、Issue 交流。

如果想打造属于自己的 AI 助理,不想被云端服务绑架

那就试试这套落地的 Gemma Chatbot 🚀!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值