Rate本质就是根据PMT公式反推利率而已,但是因为rate没有界限及收敛域所以没法通过简单的极限求解来获取解。
最终就是通过牛顿迭代式,利用切线与曲线的关系构建新的收敛函数,求最优解。
1、构建利率函数【来源PMT公式】
f ( r a t e ) = f v + p v ∗ ( r a t e + 1 ) n p e r + p m t ∗ ( 1 + r a t e ∗ t y p e ) ∗ ( r a t e + 1 ) n p e r − 1 r a t e f(rate)=fv+pv*(rate+1)^{nper}+pmt*(1+rate*type)*\frac{(rate+1)^{nper}-1}{rate} f(rate)=fv+pv∗(rate+1)nper+pmt∗(1+rate∗type)∗rate(rate+1)nper−1
2、求解利率函数的导数
f ( r a t e ) ‘ = p v ∗ n p e r ∗ ( 1 + r a t e ) n p e r − 1 + p m t ∗ ( 1 + r a t e ∗ t y p e ) ∗ n p e r ∗ ( 1 + r a t e ) n p e r − 1 r a t e − p m t ∗ ( 1 + r a t e ∗ t y p e ) ∗ ( 1 + r a t e ) n p e r − 1 r a t e 2 + p m t ∗ t y p e ∗ ( 1 + r a t e ) n p e r − 1 r a t e f(rate)^`=pv*nper*(1+rate)^{nper-1}+pmt*(1+rate*type)*nper*\frac{(1+rate)^{nper-1}}{rate}-pmt*(1+rate*type)*\frac{(1+rate)^{nper}-1}{rate^2}+pmt*type*\frac{(1+rate)^{nper}-1}{rate} f(rate)