金融rate函数解析【附java实现】

博客详细介绍了如何通过牛顿迭代法解决金融中的rate函数问题。首先从PMT公式出发构建利率函数,接着求解函数导数,然后利用牛顿迭代式构建切线函数,以找到最优解。最后,提供了Java实现的简要说明。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Rate本质就是根据PMT公式反推利率而已,但是因为rate没有界限及收敛域所以没法通过简单的极限求解来获取解。

最终就是通过牛顿迭代式,利用切线与曲线的关系构建新的收敛函数,求最优解。

1、构建利率函数【来源PMT公式】

f ( r a t e ) = f v + p v ∗ ( r a t e + 1 ) n p e r + p m t ∗ ( 1 + r a t e ∗ t y p e ) ∗ ( r a t e + 1 ) n p e r − 1 r a t e f(rate)=fv+pv*(rate+1)^{nper}+pmt*(1+rate*type)*\frac{(rate+1)^{nper}-1}{rate} f(rate)=fv+pv(rate+1)nper+pmt(1+ratetype)rate(rate+1)nper1

2、求解利率函数的导数

f ( r a t e ) ‘ = p v ∗ n p e r ∗ ( 1 + r a t e ) n p e r − 1 + p m t ∗ ( 1 + r a t e ∗ t y p e ) ∗ n p e r ∗ ( 1 + r a t e ) n p e r − 1 r a t e − p m t ∗ ( 1 + r a t e ∗ t y p e ) ∗ ( 1 + r a t e ) n p e r − 1 r a t e 2 + p m t ∗ t y p e ∗ ( 1 + r a t e ) n p e r − 1 r a t e f(rate)^`=pv*nper*(1+rate)^{nper-1}+pmt*(1+rate*type)*nper*\frac{(1+rate)^{nper-1}}{rate}-pmt*(1+rate*type)*\frac{(1+rate)^{nper}-1}{rate^2}+pmt*type*\frac{(1+rate)^{nper}-1}{rate} f(rate)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值