acreg:允许干扰项随意相关的稳健性标准误

本文深入探讨回归分析中标准误的稳健估计,着重讲解了acreg在处理空间与网络相关性的优势,通过实际案例解析收入与自杀率的关系,并介绍如何利用acreg进行网络模型和空间效应分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

全文阅读:https://www.lianxh.cn/news/a22128f268729.html

 

目录

acreg 适用于 OLS 和 2SLS 两种线性回归模型。其主要优势是允许模型的残差项存在任意形式的聚类相关性。为对该命令有详细的了解,本文将从标准误估计不准确的后果、相关文献、以及实际应用等方面进行介绍。

1. 回归系数的标准误

1.1 标准误的估计

在默认情况下,我们会假设随机扰动项  的方差  为常数,即同方差假定。然而,这一假设在大多数时候都不成立。

 

全文阅读:https://www.lianxh.cn/news/a22128f268729.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值