猫头虎 推荐:记忆张量科技联合上交大等多所高校最新开源的一款LLM长期记忆系统:MemOS,时序推理较OpenAI提高159%
MemOS 与大规模语言模型(LLM)深度集成,能够根据模型需求动态读取、写入和更新记忆,从而显著增强推理与学习能力。相比 OpenAI 基线方案,MemOS 平均准确率提升了 38.97%,Token 开销降低 60.95%,在时序推理任务上更是提高了 159%。
文章目录
一、什么是 MemOS?
MemOS(Memory Operating System)是一个为 LLM 量身打造的“操作系统”,通过提供统一的记忆管理层,使模型能像操作系统管理文件一样管理长期记忆。它支持多模态、多类型的记忆存储与检索,且可根据上下文动态更新,帮助 LLM 实现更连贯、更个性化的对话和推理。
- 官方网站:https://memos.openmem.net/
- 文档首页:https://memos.openmem.net/docs/home
- API 参考:https://memos.openmem.net/docs/api/info
- 源码仓库:https://github.com/MemTensor/MemOS
二、性能基准(📈 Performance Benchmark)
下表展示了 MemOS 在 LOCOMO 基准上与 OpenAI 等多种方案的对比,其中 Temporal Reasoning(时序推理)环节提升尤为显著。
Model | Avg. Score | Multi-Hop | Open Domain | Single-Hop | Temporal Reasoning |
---|---|---|---|---|---|
OpenAI | 0.5275 | 0.6028 | 0.3299 | 0.6183 | 0.2825 |
MemOS | 0.7331 | 0.6430 | 0.5521 | 0.7844 | 0.7321 |
Improvement | +38.98% | +6.67% | +67.35% | +26.86% | +159.15% |
💡 时序推理准确率相比 OpenAI 基线提升了 159%。
图:LOCOMO 基准五大任务中,各方案的 LLM Judge 评分对比(均值±标准差)。MemOS-0630 在所有任务类型中均优于其它方法,尤其在多跳和时序推理场景。
三、核心特性(✨ Key Features)
-
🧠 Memory-Augmented Generation (MAG)
提供统一的记忆操作 API,与 LLM 深度整合,在对话与推理环节实时检索并注入相关记忆。 -
📦 模块化记忆架构(MemCube)
灵活的模块化设计,支持不同类型记忆模块的插拔与管理。 -
💾 多种记忆类型
- Textual Memory:存储与检索结构化/非结构化文本知识。
- Activation Memory:缓存关键 KV 对(
KVCacheMemory
),加速推理并重用上下文。 - Parametric Memory:保存模型微调参数(如 LoRA 权重)。
-
🔄 动态记忆更新
支持在线添加、修改、删除记忆,保证记忆始终与外部信息同步。 -
🔌 可扩展性
提供插件式接口,方便自定义记忆模块、数据源及 LLM 集成。
四、快速上手(🚀 Getting Started)
创建并操作一个 MemCube
from memos.mem_cube.general import GeneralMemCube
# 初始化一个本地 MemCube
mem_cube = GeneralMemCube.init_from_dir("examples/data/mem_cube_2")
# 打印所有记忆内容
print("--- Textual Memories ---")
for item in mem_cube.text_mem.get_all():
print(item)
print("\n--- Activation Memories ---")
for item in mem_cube.act_mem.get_all():
print(item)
# 将 MemCube 保存到新目录
mem_cube.dump("tmp/mem_cube")
使用高层 MOS 接口
from memos.configs.mem_os import MOSConfig
from memos.mem_os.main import MOS
# 加载配置并初始化 MOS
mos_config = MOSConfig.from_json_file("examples/data/config/simple_memos_config.json")
memory = MOS(mos_config)
# 创建用户并注册 MemCube
user_id = "b41a34d5-5cae-4b46-8c49-d03794d206f5"
memory.create_user(user_id=user_id)
memory.register_mem_cube("examples/data/mem_cube_2", user_id=user_id)
# 添加一段对话记忆
memory.add(
messages=[
{"role": "user", "content": "I like playing football."},
{"role": "assistant", "content": "I like playing football too."},
],
user_id=user_id,
)
# 查询用户记忆
retrieved = memory.search(query="What do you like?", user_id=user_id)
print(f"text_memories: {retrieved['text_mem']}")
更多示例请查看 examples
目录。
五、安装指南(📦 Installation)
注意:当前官方仅支持 Linux,Windows/macOS 可能存在兼容性问题。
通过 pip 安装
pip install MemoryOS
开发者安装(可编辑模式)
git clone https://github.com/MemTensor/MemOS.git
cd MemOS
make install
可选依赖
-
Ollama 支持
curl -fsSL https://ollama.com/install.sh | sh
-
Transformers 支持(需先安装 PyTorch,建议 CUDA 版本以启用 GPU 加速)
六、社区与支持(💬 Community & Support)
- GitHub Issues:在 Issues 中反馈问题与建议
- GitHub Pull Requests:欢迎通过 Pull Requests 提交代码改进
- GitHub Discussions:加入 Discussions,与开发者和用户交流
- Discord:扫码入群,实时互动 (https://discord.gg/Txbx3gebZR)
- 微信:扫描下方二维码加入官方微信群
七、引用(📜 Citation)
如果在研究中使用 MemOS,请引用以下论文:
@article{li2025memos,
title={MemOS: An Operating System for Memory-Augmented Generation (MAG) in Large Language Models},
author={Li, Zhiyu and Song, Shichao and Wang, Hanyu and Niu, Simin and Chen, Ding and Yang, Jiawei and Xi, Chenyang and Lai, Huayi and Zhao, Jihao and Wang, Yezhaohui and others},
journal={arXiv preprint arXiv:2505.22101},
year={2025}
}
八、 最新动态(📰 News)
- 2025-07-07 – 🎉 MemOS 1.0 (Stellar) Preview Release:首个 SOTA 级 Memory OS 正式开源
- 2025-05-28 – 🎉 短文发布:在 arXiv 上传论文《MemOS: An Operating System for Memory-Augmented Generation (MAG) in Large Language Models》
- 2024-07-04 – 🎉 Memory3 模型首发:WAIC 2024 发布全新分层记忆架构模型
- 2024-07-01 – 🎉 Memory3 论文发布:在 arXiv 发布《Memory3: Language Modeling with Explicit Memory》
以上即 MemOS 的全面技术概览,欢迎体验并关注更多更新!
猫头虎 forks仓库: https://github.com/MaoTouHU/MemOS