猫头虎 推荐:记忆张量科技联合上交大等多所高校最新开源的一款LLM长期记忆系统:MemOS,时序推理较OpenAI提高159%

猫头虎 推荐:记忆张量科技联合上交大等多所高校最新开源的一款LLM长期记忆系统:MemOS,时序推理较OpenAI提高159%

MemOS 与大规模语言模型(LLM)深度集成,能够根据模型需求动态读取、写入和更新记忆,从而显著增强推理与学习能力。相比 OpenAI 基线方案,MemOS 平均准确率提升了 38.97%,Token 开销降低 60.95%,在时序推理任务上更是提高了 159%


在这里插入图片描述


一、什么是 MemOS?

MemOS(Memory Operating System)是一个为 LLM 量身打造的“操作系统”,通过提供统一的记忆管理层,使模型能像操作系统管理文件一样管理长期记忆。它支持多模态、多类型的记忆存储与检索,且可根据上下文动态更新,帮助 LLM 实现更连贯、更个性化的对话和推理。


二、性能基准(📈 Performance Benchmark)

下表展示了 MemOS 在 LOCOMO 基准上与 OpenAI 等多种方案的对比,其中 Temporal Reasoning(时序推理)环节提升尤为显著。

ModelAvg. ScoreMulti-HopOpen DomainSingle-HopTemporal Reasoning
OpenAI0.52750.60280.32990.61830.2825
MemOS0.73310.64300.55210.78440.7321
Improvement+38.98%+6.67%+67.35%+26.86%+159.15%

💡 时序推理准确率相比 OpenAI 基线提升了 159%。

图:LOCOMO 基准五大任务中,各方案的 LLM Judge 评分对比(均值±标准差)。MemOS-0630 在所有任务类型中均优于其它方法,尤其在多跳和时序推理场景。


三、核心特性(✨ Key Features)

  • 🧠 Memory-Augmented Generation (MAG)
    提供统一的记忆操作 API,与 LLM 深度整合,在对话与推理环节实时检索并注入相关记忆。

  • 📦 模块化记忆架构(MemCube)
    灵活的模块化设计,支持不同类型记忆模块的插拔与管理。

  • 💾 多种记忆类型

    • Textual Memory:存储与检索结构化/非结构化文本知识。
    • Activation Memory:缓存关键 KV 对(KVCacheMemory),加速推理并重用上下文。
    • Parametric Memory:保存模型微调参数(如 LoRA 权重)。
  • 🔄 动态记忆更新
    支持在线添加、修改、删除记忆,保证记忆始终与外部信息同步。

  • 🔌 可扩展性
    提供插件式接口,方便自定义记忆模块、数据源及 LLM 集成。


四、快速上手(🚀 Getting Started)

创建并操作一个 MemCube

from memos.mem_cube.general import GeneralMemCube

# 初始化一个本地 MemCube
mem_cube = GeneralMemCube.init_from_dir("examples/data/mem_cube_2")

# 打印所有记忆内容
print("--- Textual Memories ---")
for item in mem_cube.text_mem.get_all():
    print(item)

print("\n--- Activation Memories ---")
for item in mem_cube.act_mem.get_all():
    print(item)

# 将 MemCube 保存到新目录
mem_cube.dump("tmp/mem_cube")

使用高层 MOS 接口

from memos.configs.mem_os import MOSConfig
from memos.mem_os.main import MOS

# 加载配置并初始化 MOS
mos_config = MOSConfig.from_json_file("examples/data/config/simple_memos_config.json")
memory = MOS(mos_config)

# 创建用户并注册 MemCube
user_id = "b41a34d5-5cae-4b46-8c49-d03794d206f5"
memory.create_user(user_id=user_id)
memory.register_mem_cube("examples/data/mem_cube_2", user_id=user_id)

# 添加一段对话记忆
memory.add(
    messages=[
        {"role": "user", "content": "I like playing football."},
        {"role": "assistant", "content": "I like playing football too."},
    ],
    user_id=user_id,
)

# 查询用户记忆
retrieved = memory.search(query="What do you like?", user_id=user_id)
print(f"text_memories: {retrieved['text_mem']}")

更多示例请查看 examples 目录。


五、安装指南(📦 Installation)

注意:当前官方仅支持 Linux,Windows/macOS 可能存在兼容性问题。

通过 pip 安装

pip install MemoryOS

开发者安装(可编辑模式)

git clone https://github.com/MemTensor/MemOS.git
cd MemOS
make install
可选依赖
  • Ollama 支持

    curl -fsSL https://ollama.com/install.sh | sh
    
  • Transformers 支持(需先安装 PyTorch,建议 CUDA 版本以启用 GPU 加速)


六、社区与支持(💬 Community & Support)


七、引用(📜 Citation)

如果在研究中使用 MemOS,请引用以下论文:

@article{li2025memos,
  title={MemOS: An Operating System for Memory-Augmented Generation (MAG) in Large Language Models},
  author={Li, Zhiyu and Song, Shichao and Wang, Hanyu and Niu, Simin and Chen, Ding and Yang, Jiawei and Xi, Chenyang and Lai, Huayi and Zhao, Jihao and Wang, Yezhaohui and others},
  journal={arXiv preprint arXiv:2505.22101},
  year={2025}
}

八、 最新动态(📰 News)

  • 2025-07-07 – 🎉 MemOS 1.0 (Stellar) Preview Release:首个 SOTA 级 Memory OS 正式开源
  • 2025-05-28 – 🎉 短文发布:在 arXiv 上传论文《MemOS: An Operating System for Memory-Augmented Generation (MAG) in Large Language Models》
  • 2024-07-04 – 🎉 Memory3 模型首发:WAIC 2024 发布全新分层记忆架构模型
  • 2024-07-01 – 🎉 Memory3 论文发布:在 arXiv 发布《Memory3: Language Modeling with Explicit Memory》

以上即 MemOS 的全面技术概览,欢迎体验并关注更多更新!

猫头虎 forks仓库: https://github.com/MaoTouHU/MemOS

评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫头虎

一分也是爱,打赏博主成就未来!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值