如何解决py:55: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
grouped = df.groupby(‘range’)[‘newapi’].apply(list).to_dict()问题
引言
在使用 Pandas 进行分组(groupby
)操作时,你可能会遇到如下警告:
FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas.
Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
grouped = df.groupby('range')['newapi'].apply(list).to_dict()
此警告提示:在未来的 Pandas 版本中,groupby
对类别(Categorical)数据的默认行为将从 observed=False
改为 observed=True
。如果不做任何修改,在版本升级后,代码的分组结果可能会发生变化,或者需要对新行为进行适配。
本文将从以下几个方面,超详细地讲解如何:
- 重现该警告
- 分析警告背后的机制
- 通过修改
observed
参数来解决或消除警告 - 推荐最佳实践,保证代码的向前兼容
文章目录
作者简介
猫头虎是谁?
大家好,我是 猫头虎,猫头虎技术团队创始人,也被大家称为猫哥。我目前是COC北京城市开发者社区主理人、COC西安城市开发者社区主理人,以及云原生开发者社区主理人,在多个技术领域如云原生、前端、后端、运维和AI都具备丰富经验。
我的博客内容涵盖广泛,主要分享技术教程、Bug解决方案、开发工具使用方法、前沿科技资讯、产品评测、产品使用体验,以及产品优缺点分析、横向对比、技术沙龙参会体验等。我的分享聚焦于云服务产品评测、AI产品对比、开发板性能测试和技术报告。
目前,我活跃在CSDN、51CTO、腾讯云、阿里云开发者社区、知乎、微信公众号、视频号、抖音、B站、小红书等平台,全网粉丝已超过30万。我所有平台的IP名称统一为猫头虎或猫头虎技术团队。
我希望通过我的分享,帮助大家更好地掌握和使用各种技术产品,提升开发效率与体验。
作者名片 ✍️
- 博主:猫头虎
- 全网搜索关键词:猫头虎
- 作者微信号:Libin9iOak
- 作者公众号:猫头虎技术团队
- 更新日期:2025年03月21日
- 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能!
加入我们AI共创团队 🌐
- 猫头虎AI共创社群矩阵列表:
加入猫头虎的共创圈,一起探索编程世界的无限可能! 🚀
部分专栏链接
:
🔗 精选专栏:
- 《面试题大全》 — 面试准备的宝典!
- 《IDEA开发秘籍》 — 提升你的IDEA技能!
- 《100天精通鸿蒙》 — 从Web/安卓到鸿蒙大师!
- 《100天精通Golang(基础入门篇)》 — 踏入Go语言世界的第一步!
正文
一、问题重现
假设有如下示例数据,其中 range
列为类别(Categorical)类型:
import pandas as pd
# 构造示例 DataFrame
df = pd.DataFrame({
'range': pd.Categorical(
['A', 'B', 'A', 'C', 'B', 'A'],
categories=['A', 'B', 'C', 'D'], # D 虽然在 categories 中,但不在数据中出现
ordered=False
),
'newapi': [1, 2, 3, 4, 5, 6]
})
# 直接 groupby,未指定 observed
grouped = df.groupby('range')['newapi'].apply(list).to_dict()
运行后,你会看到:
FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
grouped = df.groupby('range')['newapi'].apply(list).to_dict()
当前行为 vs. 未来行为
-
当前默认
observed=False
:- 分组时会返回所有类别(categories)对应的键,即使某个类别在数据中没有出现,其对应值也是空列表。
-
未来默认
observed=True
:- 只返回实际在数据中出现的类别,未出现的类别将被忽略,不会在结果字典中出现。
二、深入机制解析
1. 什么是 observed
?
observed=False
(默认行为):
返回完整的类别索引(包括那些未出现在数据中的类别),保证结果长度与分类定义一致。observed=True
:
只“观测”(observe)到真实出现的类别,跳过未出现的类别,结果更为精简。
2. 为什么要修改默认值?
- 性能与输出简洁性:对于大规模的分类变量,当某些类别罕见时,保留全部类别分组会浪费计算和存储;
- 符合直觉:开发者往往期望只看到真实出现的数据分组;
- 避免冗余:在可视化或统计报告中,忽略未出现的类别可让关注点更集中。
3. backward compatibility(向后兼容)
-
默认值从
False
改为True
会影响现有代码:- 如果你的逻辑依赖于“所有类别都在输出中”,则需要显式指定
observed=False
; - 如果你的逻辑只关注出现过的类别,则可以切换到
observed=True
,同时消除警告。
- 如果你的逻辑依赖于“所有类别都在输出中”,则需要显式指定
三、解决方案
方案一:保持当前行为(显式 observed=False
)
在需要“全类别输出”时,显式传入 observed=False
:
grouped = (
df
.groupby('range', observed=False)['newapi']
.apply(list)
.to_dict()
)
-
优点:
- 保持与当前版本一致的输出格式;
- 仅消除警告,不改变逻辑。
-
适用场景:
- 你明确需要输出所有定义的类别(包括未出现的)。
方案二:采用未来默认(显式 observed=True
)
如果你只关心“实际出现”的分组,改为 observed=True
:
grouped = (
df
.groupby('range', observed=True)['newapi']
.apply(list)
.to_dict()
)
-
优点:
- 输出更简洁;
- 与未来 Pandas 默认行为一致,无需在未来迁移时再次修改。
-
适用场景:
- 你只在意出现过的类别,即使某些类别定义在 Categorical 中,但并不需要它们的空分组。
方案三:如果你不确定
如果暂时无法判断应该保留哪种行为,可以在开发环境或测试环境中,先使用 observed=True
与 observed=False
两个版本分别运行,比较输出差异,再决定。示例:
# 试验性比较
g_false = df.groupby('range', observed=False)['newapi'].apply(list).to_dict()
g_true = df.groupby('range', observed=True)['newapi'].apply(list).to_dict()
print("False 全类别:", g_false)
print("True 实际类别:", g_true)
四、完整示例
import pandas as pd
# 1. 准备数据
df = pd.DataFrame({
'range': pd.Categorical(['A','B','A','C','B','A'], categories=['A','B','C','D']),
'newapi': [1, 2, 3, 4, 5, 6]
})
# 2. 保持当前行为,显式 observed=False
grouped_keep_all = df.groupby('range', observed=False)['newapi'].apply(list).to_dict()
print("保留全部类别(含空分组):", grouped_keep_all)
# 输出: {'A': [1, 3, 6], 'B': [2, 5], 'C': [4], 'D': []}
# 3. 采用未来默认,显式 observed=True
grouped_observed_only = df.groupby('range', observed=True)['newapi'].apply(list).to_dict()
print("仅观测到的类别:", grouped_observed_only)
# 输出: {'A': [1, 3, 6], 'B': [2, 5], 'C': [4]}
五、最佳实践与建议
-
明确行为意图
- 在项目规范或代码注释中注明为何选择
observed=False
或True
,方便团队成员理解;
- 在项目规范或代码注释中注明为何选择
-
版本兼容
- 在
requirements.txt
或setup.py
中锁定 Pandas 版本范围,避免无意中升级到引入新默认的版本;
- 在
-
统一风格
- 若项目中多处使用 Categorical 分组,统一在封装函数或工具层面处理
observed
参数;
- 若项目中多处使用 Categorical 分组,统一在封装函数或工具层面处理
-
测试覆盖
- 为关键逻辑编写单元测试,验证
observed
在不同参数下的输出,保证升级后不会引入潜在 bug;
- 为关键逻辑编写单元测试,验证
-
日志与监控
- 当发生分组操作时,可在日志中记录使用了哪个
observed
设置,便于追踪和排查。
- 当发生分组操作时,可在日志中记录使用了哪个
结语
Pandas 团队对 observed
默认值的调整,是为了提升分组操作的灵活性与性能。但在实际项目中,我们要有意识地显式声明该参数,以保持代码的可预测性与稳定性。本文从警告重现、机制解析、两种解决方案、完整代码示例到最佳实践,超详细地剖析了 FutureWarning: observed
参数的处理方式。希望对你的项目升级和日常开发有所帮助!
粉丝福利
👉 更多信息:有任何疑问或者需要进一步探讨的内容,欢迎点击文末名片获取更多信息。我是猫头虎博主,期待与您的交流! 🦉💬
联系我与版权声明 📩
- 联系方式:
- 微信: Libin9iOak
- 公众号: 猫头虎技术团队
- 版权声明:
本文为原创文章,版权归作者所有。未经许可,禁止转载。更多内容请访问猫头虎的博客首页。
点击✨⬇️下方名片
⬇️✨,加入猫头虎AI共创社群矩阵。一起探索科技的未来,共同成长。🚀