如何解决py:55: FutureWarning: The default of observed=False is deprecated and will be changed to True in

如何解决py:55: FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
grouped = df.groupby(‘range’)[‘newapi’].apply(list).to_dict()问题

引言

在使用 Pandas 进行分组(groupby)操作时,你可能会遇到如下警告:

FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. 
Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
  grouped = df.groupby('range')['newapi'].apply(list).to_dict()

此警告提示:在未来的 Pandas 版本中,groupby 对类别(Categorical)数据的默认行为将从 observed=False 改为 observed=True。如果不做任何修改,在版本升级后,代码的分组结果可能会发生变化,或者需要对新行为进行适配。

本文将从以下几个方面,超详细地讲解如何:

  1. 重现该警告
  2. 分析警告背后的机制
  3. 通过修改 observed 参数来解决或消除警告
  4. 推荐最佳实践,保证代码的向前兼容
    在这里插入图片描述


作者简介

猫头虎是谁?

大家好,我是 猫头虎,猫头虎技术团队创始人,也被大家称为猫哥。我目前是COC北京城市开发者社区主理人COC西安城市开发者社区主理人,以及云原生开发者社区主理人,在多个技术领域如云原生、前端、后端、运维和AI都具备丰富经验。

我的博客内容涵盖广泛,主要分享技术教程、Bug解决方案、开发工具使用方法、前沿科技资讯、产品评测、产品使用体验,以及产品优缺点分析、横向对比、技术沙龙参会体验等。我的分享聚焦于云服务产品评测、AI产品对比、开发板性能测试和技术报告

目前,我活跃在CSDN、51CTO、腾讯云、阿里云开发者社区、知乎、微信公众号、视频号、抖音、B站、小红书等平台,全网粉丝已超过30万。我所有平台的IP名称统一为猫头虎猫头虎技术团队

我希望通过我的分享,帮助大家更好地掌握和使用各种技术产品,提升开发效率与体验。


作者名片 ✍️

  • 博主猫头虎
  • 全网搜索关键词猫头虎
  • 作者微信号Libin9iOak
  • 作者公众号猫头虎技术团队
  • 更新日期2025年03月21日
  • 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能!

加入我们AI共创团队 🌐

加入猫头虎的共创圈,一起探索编程世界的无限可能! 🚀

部分专栏链接

🔗 精选专栏


猫头虎分享No bug

正文


一、问题重现

假设有如下示例数据,其中 range 列为类别(Categorical)类型:

import pandas as pd

# 构造示例 DataFrame
df = pd.DataFrame({
    'range': pd.Categorical(
        ['A', 'B', 'A', 'C', 'B', 'A'],
        categories=['A', 'B', 'C', 'D'],  # D 虽然在 categories 中,但不在数据中出现
        ordered=False
    ),
    'newapi': [1, 2, 3, 4, 5, 6]
})

# 直接 groupby,未指定 observed
grouped = df.groupby('range')['newapi'].apply(list).to_dict()

运行后,你会看到:

FutureWarning: The default of observed=False is deprecated and will be changed to True in a future version of pandas. Pass observed=False to retain current behavior or observed=True to adopt the future default and silence this warning.
  grouped = df.groupby('range')['newapi'].apply(list).to_dict()

当前行为 vs. 未来行为

  • 当前默认 observed=False

    • 分组时会返回所有类别(categories)对应的键,即使某个类别在数据中没有出现,其对应值也是空列表。
  • 未来默认 observed=True

    • 只返回实际在数据中出现的类别,未出现的类别将被忽略,不会在结果字典中出现。

二、深入机制解析

1. 什么是 observed

  • observed=False(默认行为):
    返回完整的类别索引(包括那些未出现在数据中的类别),保证结果长度与分类定义一致。
  • observed=True
    只“观测”(observe)到真实出现的类别,跳过未出现的类别,结果更为精简。

2. 为什么要修改默认值?

  • 性能与输出简洁性:对于大规模的分类变量,当某些类别罕见时,保留全部类别分组会浪费计算和存储;
  • 符合直觉:开发者往往期望只看到真实出现的数据分组;
  • 避免冗余:在可视化或统计报告中,忽略未出现的类别可让关注点更集中。

3. backward compatibility(向后兼容)

  • 默认值从 False 改为 True 会影响现有代码:

    • 如果你的逻辑依赖于“所有类别都在输出中”,则需要显式指定 observed=False
    • 如果你的逻辑只关注出现过的类别,则可以切换到 observed=True,同时消除警告。

三、解决方案

方案一:保持当前行为(显式 observed=False

在需要“全类别输出”时,显式传入 observed=False

grouped = (
    df
    .groupby('range', observed=False)['newapi']
    .apply(list)
    .to_dict()
)
  • 优点

    • 保持与当前版本一致的输出格式;
    • 仅消除警告,不改变逻辑。
  • 适用场景

    • 你明确需要输出所有定义的类别(包括未出现的)。

方案二:采用未来默认(显式 observed=True

如果你只关心“实际出现”的分组,改为 observed=True

grouped = (
    df
    .groupby('range', observed=True)['newapi']
    .apply(list)
    .to_dict()
)
  • 优点

    • 输出更简洁;
    • 与未来 Pandas 默认行为一致,无需在未来迁移时再次修改。
  • 适用场景

    • 你只在意出现过的类别,即使某些类别定义在 Categorical 中,但并不需要它们的空分组。

方案三:如果你不确定

如果暂时无法判断应该保留哪种行为,可以在开发环境或测试环境中,先使用 observed=Trueobserved=False 两个版本分别运行,比较输出差异,再决定。示例:

# 试验性比较
g_false = df.groupby('range', observed=False)['newapi'].apply(list).to_dict()
g_true  = df.groupby('range', observed=True)['newapi'].apply(list).to_dict()
print("False 全类别:", g_false)
print("True  实际类别:", g_true)

四、完整示例

import pandas as pd

# 1. 准备数据
df = pd.DataFrame({
    'range': pd.Categorical(['A','B','A','C','B','A'], categories=['A','B','C','D']),
    'newapi': [1, 2, 3, 4, 5, 6]
})

# 2. 保持当前行为,显式 observed=False
grouped_keep_all = df.groupby('range', observed=False)['newapi'].apply(list).to_dict()
print("保留全部类别(含空分组):", grouped_keep_all)
# 输出: {'A': [1, 3, 6], 'B': [2, 5], 'C': [4], 'D': []}

# 3. 采用未来默认,显式 observed=True
grouped_observed_only = df.groupby('range', observed=True)['newapi'].apply(list).to_dict()
print("仅观测到的类别:", grouped_observed_only)
# 输出: {'A': [1, 3, 6], 'B': [2, 5], 'C': [4]}

五、最佳实践与建议

  1. 明确行为意图

    • 在项目规范或代码注释中注明为何选择 observed=FalseTrue,方便团队成员理解;
  2. 版本兼容

    • requirements.txtsetup.py 中锁定 Pandas 版本范围,避免无意中升级到引入新默认的版本;
  3. 统一风格

    • 若项目中多处使用 Categorical 分组,统一在封装函数或工具层面处理 observed 参数;
  4. 测试覆盖

    • 为关键逻辑编写单元测试,验证 observed 在不同参数下的输出,保证升级后不会引入潜在 bug;
  5. 日志与监控

    • 当发生分组操作时,可在日志中记录使用了哪个 observed 设置,便于追踪和排查。

结语

Pandas 团队对 observed 默认值的调整,是为了提升分组操作的灵活性与性能。但在实际项目中,我们要有意识地显式声明该参数,以保持代码的可预测性与稳定性。本文从警告重现、机制解析、两种解决方案、完整代码示例到最佳实践,超详细地剖析了 FutureWarning: observed 参数的处理方式。希望对你的项目升级和日常开发有所帮助!

猫头虎

粉丝福利


👉 更多信息:有任何疑问或者需要进一步探讨的内容,欢迎点击文末名片获取更多信息。我是猫头虎博主,期待与您的交流! 🦉💬
猫头虎


联系我与版权声明 📩

  • 联系方式
    • 微信: Libin9iOak
    • 公众号: 猫头虎技术团队
  • 版权声明
    本文为原创文章,版权归作者所有。未经许可,禁止转载。更多内容请访问猫头虎的博客首页

点击✨⬇️下方名片⬇️✨,加入猫头虎AI共创社群矩阵。一起探索科技的未来,共同成长。🚀

在这里插入图片描述

评论 38
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

猫头虎

一分也是爱,打赏博主成就未来!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值