training a helpful and harmless assistant with refinforcement learning from human feedback

该研究通过强化学习从人类反馈(RLHF)训练语言模型,以提高其帮助性和无害性。实验表明,随着模型规模的增大,RLHF微调的效果逐渐增强,特别是在多轮对话中。研究对比了不同数据收集和训练策略,包括无监督学习、拒绝采样和RLHF微调,并分析了这些方法在有用性和无害性之间的平衡。此外,还探讨了偏好建模在对话轮数增加时的性能变化,并使用PPO策略优化RL模型。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值