AnimateDiff:Animate your personalized text-to-image diffusion models with spectific tuning

AnimateDiff是结合了motion modeling module的文本到图像(T2I)算法,专注于个性化动画。它通过lora和dreambooth的微调实现动画效果,与Animate anyone不同。文章介绍了如何在基础T2I模型中加入运动建模模块,通过学习视频片段的运动先验,实现无需额外数据或定制训练的动画生成。此外,详细阐述了网络膨胀、模块设计和训练目标,以实现帧间高效信息交流和时间感知。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://zhuanlan.zhihu.com/p/669814884icon-default.png?t=N7T8https://zhuanlan.zhihu.com/p/669814884AnimateDiff本质上还是包含了motion modeling module的文生图算法,它的个性化动画能力是通过绑定了lora和dreambooth的sd提供的,这点和Animate anyone不同,后者是完全自己训练的一个模型,其实不能实现个性化的动画角色驱动,而animateDiff可以实现。

1.Introduction

在基础T2I模型中引入一个运动建模模块motion modeling module,并在大规模视频片段上进行微调,学习合理的运动先验知识。motion modeling module可以为所有的T2I

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值