1.Introduction
学术模型与gpt-4o和gemini的区别在于:是否使用精心结构化的多模态交错数据进行扩展-整合文本、图像、视频和网络来源,我们的实验揭示了随着交错多模态预训练的扩展而出现的新特性。关于架构设计,我们的主要目标是最大化模型的容量,而不引入常见于先前模型的启发式瓶颈或任务特定约束,采用了Mixture of Transformer Experts(MoT)架构,总计14B,激活7B。</
1.Introduction
学术模型与gpt-4o和gemini的区别在于:是否使用精心结构化的多模态交错数据进行扩展-整合文本、图像、视频和网络来源,我们的实验揭示了随着交错多模态预训练的扩展而出现的新特性。关于架构设计,我们的主要目标是最大化模型的容量,而不引入常见于先前模型的启发式瓶颈或任务特定约束,采用了Mixture of Transformer Experts(MoT)架构,总计14B,激活7B。</