Error: Command failed with an error: please define an external editor

本文介绍了如何在MongoDB中设置外部编辑器,如vi,以便更方便地编辑和管理数据库中的函数。通过设置EDITOR环境变量并重启MongoDB服务,可以使用mongosh连接并编辑函数。示例中展示了创建、调用和编辑函数的过程,强调了外部编辑器在处理多行代码时的便利性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

错误提示

在这里插入图片描述

解决方案
  1. 在启动MongoDB实例之前,设置外部编辑器。
## 查看vi编辑器的位置
[root@linux130 ~]# whereis vi
vi: /usr/bin/vi /usr/share/man/man1/vi.1.gz
## 设置外部编辑器
[root@linux130 ~]# export EDITOR="/usr/bin/vi"

  1. 重启mongod
[root@linux130 ~]# systemctl restart mongod
  1. 使用mongosh连接数据库
[root@linux130 ~]# mongosh

在这里插入图片描述
4. 创建 abc 函数

test> abc = function(x,y){
... return x + y;
... }
[Function: abc]

  1. 调用 abc 函数
test> abc(10, 10)
20

  1. 编辑 abc 函数
test> edit abc

在这里插入图片描述
将加法 修改为 乘法,wq保存退出
在这里插入图片描述
7. 再次调用 abc 函数,验证是否修改成功

test> abc(10, 10)
100

在这里插入图片描述

总结:MongoDB使用外部编辑器的原因

shell 的多行支持比较有限:不能编辑前面的行。如果编辑到第 15 行时发现第 1 行有一个错误,那会非常让人懊恼。因此,对于较大的代码块或者对象,可能需要在编辑器中编辑它们。为此,可以在shell 中设置 EDITOR 变量(也可以在环境变量中进行设置)

<think>嗯,用户遇到了CUDA的断言错误,具体是check_error: Assertion `0' failed。首先,我需要分析可能的原因。根据引用[2]和[3],这通常和显存不足有关。比如训练YOLOv3时batch size太大,或者模型参数没调好,导致显存不够用。这时候应该考虑减小batch size或者subdivisions,或者在配置文件中调整参数,如引用[4]提到的,修改测试和训练的参数设置。 另外,用户可能没有正确配置GPU架构。引用[3]提到需要修改Makefile中的ARCH参数,对应自己的GPU型号。比如GTX 1060对应的是compute_61,sm_61,如果设置错了可能会导致问题。 还有可能是代码本身的bug或者环境问题。比如CUDA驱动或cuDNN版本不兼容,这时候需要检查版本匹配。或者代码中存在未处理的错误,比如内存分配失败,这时候需要添加错误检查,如引用[5]提到的Assert函数使用。 用户需要逐步排查:首先检查显存使用情况,调整配置;然后确认GPU架构设置是否正确;接着检查代码中的错误处理;最后验证环境配置。如果所有步骤都做了还是有问题,可能需要进一步调试或寻求社区帮助。</think>### CUDA断言错误`check_error: Assertion '0' failed`解决方案 #### 1. **显存不足问题(最常见原因)** - **现象**:训练深度学习模型(如YOLOv3)时出现`CUDA Error: out of memory`[^2][^3] - **解决方案**: - **减小批次大小**:修改`.cfg`文件中的`batch`和`subdivisions`参数,例如将`batch=64`改为`batch=32`,并减少`subdivisions`值[^4] - **释放占用显存的进程**:使用`nvidia-smi`命令查看显存占用,终止无关进程 - **测试模式验证**:将配置文件切换为测试模式(`batch=1, subdivisions=1`),确认是否配置错误 #### 2. **GPU架构配置错误** - **现象**:编译阶段出现断言失败,尤其是使用自定义GPU时 - **解决方案**: - 修改`Makefile`中的`ARCH`参数,例如: ```makefile ARCH= -gencode arch=compute_61,code=sm_61 # GTX 1060对应此配置 ``` - 查询GPU算力表(NVIDIA官网),匹配`compute_XX`和`sm_XX` #### 3. **代码逻辑错误** - **现象**:内存越界、空指针等编程错误引发断言 - **解决方案**: - 添加CUDA错误检查宏: ```c #define checkCudaErrors(call) { \ const cudaError_t error = call; \ if (error != cudaSuccess) { \ printf("Error: %s:%d, ", __FILE__, __LINE__); \ printf("code:%d, reason: %s\n", error, cudaGetErrorString(error)); \ exit(1); \ } \ } ``` - 使用`cuda-memcheck`工具检测内存错误[^5] #### 4. **环境配置问题** - **验证步骤**: - 检查CUDA与GPU驱动兼容性(`nvidia-smi`顶部显示的最高支持CUDA版本) - 确认cuDNN版本与CUDA版本匹配 - 重编译代码:`make clean && make`
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值