tf.atan(y/x)与tf.atan2(y,x)

博客提供了两个参考链接,一个是关于TensorFlow Python的教程,另一个是相关技术文章,为学习和研究TensorFlow Python提供了参考资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

详细解释这段代码:def phsical_loss(y_true, y_pred): y_true =tf.cast(y_true, y_pred.dtype) loss_real=tf.keras.losses.MSE(y_true[0],y_pred[0]) loss_img= tf.keras.losses.MSE(y_true[1],y_pred[1]) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_amp=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_real+loss_img+loss_amp#两个子模型各加一个完整约束 def angle_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) img_ture=tf.atan2(y_true[1],y_true[0]) img_pred=tf.atan2(y_pred[1],y_pred[0]) return tf.keras.losses.MAE(img_ture,img_pred) def amp_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_phsical=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_phsical model_in=tf.keras.Input((16,16,1)) model_real_out=ResNet18([2,2,2,2])(model_in) model_img_out=ResNet18([2,2,2,2])(model_in) model_all=tf.keras.Model(model_in,[model_real_out,model_img_out]) model_all.compile(loss=phsical_loss, optimizer=tf.keras.optimizers.Adam(tf.keras.optimizers.schedules.InverseTimeDecay( 0.001, decay_steps=250*25, decay_rate=1, staircase=False)), metrics=['mse']) checkpoint_save_path= "C:\\Users\\Root\\Desktop\\bysj\\model_all.ckpt" if os.path.exists(checkpoint_save_path + '.index'): print('------------------load model all---------------------') model_all.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path, save_weights_only=True,save_best_only=True)
06-06
解释以下这段代码:import tensorflow as tf gpus =tf.config.experimental.list_physical_devices(device_type='GPU') tf.config.experimental.set_virtual_device_configuration(gpus[0],[tf.config.experimental.VirtualDeviceConfiguration(memory_limit=4096)]) #import scipy.io as sio import pickle import os,random import matplotlib.pyplot as plt #import scipy.stats from tensorflow import losses from tensorflow.keras import Model from tensorflow.keras import layers import matplotlib.pyplot as plt import tensorflow as tf import numpy as np #import scipy.io as sio #import scipy.stats import math import os import pdb from tensorflow import losses from model import ResNet18 from re_dataset_real import train_image1,train_label1,test_image1,test_label1,val_image1,val_label1 from re_dataset_imag import train_image2,train_label2,test_image2,test_label2,val_image2,val_label2 def phsical_loss(y_true, y_pred): y_true =tf.cast(y_true, y_pred.dtype) loss_real=tf.keras.losses.MSE(y_true[0],y_pred[0]) loss_img= tf.keras.losses.MSE(y_true[1],y_pred[1]) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_amp=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_real+loss_img+loss_amp#两个子模型各加一个完整约束 def angle_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) img_ture=tf.atan2(y_true[1],y_true[0]) img_pred=tf.atan2(y_pred[1],y_pred[0]) return tf.keras.losses.MAE(img_ture,img_pred) def amp_loss(y_true, y_pred): y_true = tf.cast(y_true, y_pred.dtype) amp_ture=tf.pow(y_true[0],2)+tf.pow(y_true[1],2) amp_pred=tf.pow(y_pred[0],2)+tf.pow(y_pred[1],2) loss_phsical=tf.keras.losses.MSE(amp_ture,amp_pred) return loss_phsical model_in=tf.keras.Input((16,16,1)) model_real_out=ResNet18([2,2,2,2])(model_in) model_img_out=ResNet18([2,2,2,2])(model_in) model_all=tf.keras.Model(model_in,[model_real_out,model_img_out]) model_all.compile(loss=phsical_loss, optimizer=tf.keras.optimizers.Adam(tf.keras.optimizers.schedules.InverseTimeDecay( 0.001, decay_steps=250*25, decay_rate=1, staircase=False)), metrics=['mse']) checkpoint_save_path= "C:\\Users\\Root\\Desktop\\bysj\\model_all.ckpt" if os.path.exists(checkpoint_save_path + '.index'): print('------------------load model all---------------------') model_all.load_weights(checkpoint_save_path) cp_callback = tf.keras.callbacks.ModelCheckpoint(filepath=checkpoint_save_path, save_weights_only=True,save_best_only=True)
06-06
下面的代码是干什么用的,请生成说明注释,: 【import rospy, math, tf from costmap_converter.msg import ObstacleArrayMsg, ObstacleMsg from geometry_msgs.msg import PolygonStamped, Point32, QuaternionStamped, Quaternion, TwistWithCovariance from tf.transformations import quaternion_from_euler def publish_obstacle_msg(): pub = rospy.Publisher('/test_optim_node/obstacles', ObstacleArrayMsg, queue_size=1) #pub = rospy.Publisher('/p3dx/move_base/TebLocalPlannerROS/obstacles', ObstacleArrayMsg, queue_size=1) rospy.init_node("test_obstacle_msg") y_0 = -3.0 vel_x = 0.0 vel_y = 0.3 range_y = 6.0 obstacle_msg = ObstacleArrayMsg() obstacle_msg.header.stamp = rospy.Time.now() obstacle_msg.header.frame_id = "map" # CHANGE HERE: odom/map # Add point obstacle obstacle_msg.obstacles.append(ObstacleMsg()) obstacle_msg.obstacles[0].id = 99 obstacle_msg.obstacles[0].polygon.points = [Point32()] obstacle_msg.obstacles[0].polygon.points[0].x = -1.5 obstacle_msg.obstacles[0].polygon.points[0].y = 0 obstacle_msg.obstacles[0].polygon.points[0].z = 0 yaw = math.atan2(vel_y, vel_x) q = tf.transformations.quaternion_from_euler(0,0,yaw) obstacle_msg.obstacles[0].orientation = Quaternion(*q) obstacle_msg.obstacles[0].velocities.twist.linear.x = vel_x obstacle_msg.obstacles[0].velocities.twist.linear.y = vel_y obstacle_msg.obstacles[0].velocities.twist.linear.z = 0 obstacle_msg.obstacles[0].velocities.twist.angular.x = 0 obstacle_msg.obstacles[0].velocities.twist.angular.y = 0 obstacle_msg.obstacles[0].velocities.twist.angular.z = 0 r = rospy.Rate(10) # 10hz t = 0.0 while not rospy.is_shutdown(): # Vary y component of the point obstacle if (vel_y >= 0): obstacle_msg.obstacles[0].polygon.points[0].y = y_0 + (vel_y*t)%range_y else: obstacle_msg.obstacles[0].polygon.points[0].y = y_0 + (vel_y*t)%range_y - range_y t = t + 0.1 pub.publish(obstacle_msg) r.sleep() if __name__ == '__main__': try: publish_obstacle_msg() except rospy.ROSInterruptException: pass】
最新发布
03-15
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值