代码调试2:coco数据集生成深度图

本文介绍了在使用COCO数据集生成深度图时遇到的问题及解决方案,包括图片异常处理、异常图片存储为npy文件、生成深度图并记录异常、读取异常列表分别存放图片,最后分析了错误原因并提供了解决方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码调试:coco数据集生成深度图

作者:安静到无声 个人主页

问题1:图片存在异常,跳过不处理

在获取深度图的时候,直接执代码,会产生以下错误:RuntimeError和ValueError。
因此我重新修改了代码,如果出现以下两种错误,则执行下一次循环,代码如下:

image-20230802200511206

修改之后代码可以正常执行。

问题2——将异常图片集存储为npy文件

检测错误的图片,我们会存放在一个列表中,然后会存以npy的方式存储在文件夹下/home/lihuanyu/code/011yolov8/COCOdevkit/COCO2014/异常图片
如何修改?

因为上文已经将存在错误异常的数据存在了一个列表中,所以我们只需将这个列表保存在

/home/lihuanyu/code/011yolov8/COCOdevkit/COCO2014/异常图片/test2014.npy
/home/lihuanyu/code/011yolov8/COCOdevkit/COCO2014/异常图片/val2014.npy
/home/lihuanyu/code/011yolov8/COCOdevkit/COCO2014/异常图片/train2014.npy

示例代码如下:

#存储npy文件
import numpy as np
my_list = [1, 2, 3, 4, 5]  # 要保存为 .npy 文件的列表
# 将列表保存为 .npy 文件
np.save('output.npy', my_list)


加载npy文件
import numpy as np
# 加载 .npy 文件
loaded_array = np.load('output.npy')
# 将加载的数组转换回 Python 列表
loaded_list = loaded_array.tolist()
print(loaded_list)  

问题3——将原始文件夹train2014、test2014和val2014下的图片生成深度图,并记录异常图片存放的npy文件中。

具体做法:

  1. 首先创建三个文件,用于生成深度图
infer_coco2014_test.py
infer_coco2014_val.py
infer_coco2014_train.py
  1. 原始图片的位置
/home/lihuanyu/code/011yolov8/COCOdevkit/COCO2014/test2014
/home/lihuanyu/code/011yolov8/COCOdevkit/COCO2014/val2014
/home/lihuanyu/code/011yolov8/COCOdevkit/COCO2014/train2014
  1. 生成的深度图保存的位置:
/home/lihuanyu/code/011yolov8/COCOdevkit/COCO2014/深度图/test2014
/home/lihuanyu/code/011yolov8/COCOdevkit/COCO2014/深度图/val2014
/home/lihuanyu/code/011yolov8/COCOdevkit/COCO2014/深度图/train2014
  1. 错误异常图片文件(异常图片的文件名)保存的位置
/home/lihuanyu
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CV视界

如果感觉有用,可以打赏哦~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值