通过掌握真正重要的东西来释放AI的全部潜力:上下文
有一段时间,提示词工程是AI世界的流行词。
我们在网上分享提示词技巧。 我们收藏提示词库。 我们争论"扮演一个…"是否比"你是一个…"给出更好的结果。
说实话,这很有道理——当AI主要意味着与GPT聊天时。
但游戏规则已经改变了。
当提示词不再足够时
在ChatGPT的早期,你可以通过巧妙的措辞完成令人惊讶的工作量。 想要一首诗? 想要代码? 想要结构化的JSON响应?
你只需要找到魔法词汇。我们做到了。提示词工程是关于制作巧妙、简洁的请求,从黑盒中挤出性能。
但我们不再只是聊天了。
我们在构建。
能够规划、推理和行动的AI智能体。 动态获取和注入信息的RAG系统。 具有记忆、工具和状态的工作流。 融合文本、代码、视觉、音频和工具的多模态管道。 所有这些都依赖于一件事:上下文。
什么是上下文工程?
说实话,只有这个术语是新的。 如果我们实事求是——我们已经在做上下文工程了,只是没有这样称呼它。
每次我们制作更好的提示词时,往往是因为我们提供了更好的上下文。 更多的清晰度。更多的例子。更多的约束。
"更好的提示词"只是那个有更好上下文的。