云计算实战应用案例精讲-【深度学习】多模态融合(最终篇)

本文详细探讨了多模态深度学习在云计算中的应用,重点介绍了网络结构设计和模态融合方法。讨论了图注意力机制、双模Transformer注意力机制和双线性池化等融合技术。同时,详细阐述了多模态ALBEF模型的预训练任务和VILT模型的源码实践,展示了如何在实际项目中应用这些模型。最后,文章列举了多种多模态融合方法及其在3D目标检测中的应用,如决策级融合、特征级融合(RoI-level和Point/Voxel-level)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

算法原理

多模态深度学习中的网络结构设计和模态融合方法

图注意力机制

双模的transformer的注意力机制

双线性池化和注意力机制

多模态ALBEF模型

模型结构

预训练任务

代码实现

 多模态学习模型VILT

 VILT几个实用的源码实践

多模态融合 (Multimodal Fusion)

TFN(Multimodal Tensor Fusion Network)

LMF(Low-rank Multimodal Fusion)

PTP (polynomialtensor pooling)

DSSM(Deep Structured Semantic Models)

Dynamic Fusion for Multimodal Data

MFN(Memory Fusion Network)

Multi-Interactive MemoryNetwork

Neural Machine Translation with Universal Visual Representation

MCF(Multi-modal Circulant Fusion for Video-to-Language and Backward)

Adversarial Multimodal Representation Learning for Click-Through Rate Prediction

Cross-modality Person re-identification with Shared-Specific Feature Transfer

Feature Projection for Improved Text Classification.

Learning Deep Multimodal Feature Representation with Asymmetric Multi-layer Fusion

Adaptive Multimodal Fusion for Facial Action Units Recognition

Attention Bottlenecks for Multimodal Fusion

算法拓展 

 多模态3D目标检测主要方法

(一)     决策级融合 (Decision-level)

(二) 特征级融合 (Feature-level)

2. 点/体素融合 (Point/Voxel-level)


前言

一般来说,模态是指事物发生或存在的方式,多模态是指两个或者两个以上的模态的各种形式的组合。对每一种信息的来源或者形式,都可以称为一种模态(Modality),目前研究领域中主要是对图像,文本,语音三种模态的处理。之所以要对模态进行融合,是因为不同模态的表现方式不一样,看待事物的角度也会不一样,所以存在一些交叉(所以存在信息冗余),互补(所以比单特征更优秀)的现象,甚至模态间可能还存在多种不同的信息交互,如果能合理的处理多模态信息,就能得到丰富特征信息。即概括来说多模态的显著特点是: 冗余性 和 互补性 。在这里插入图片描述

多模态3D目标检测是当前3D目标检测研究热点之一,主要是指利用跨模态数据提升模型的检测精度。一般而言,多模态数据包含:图像数据、激光雷达数据、毫米波雷达数据、双目深度数据等,

算法原理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值