MATLAB算法实战应用案例精讲-【概念篇】构建数据指标方法

数据指标体系是数据分析师的基础工作,它包括了数据指标的分类、设计原则、搭建步骤和管理方法。原子指标是不可拆分的,派生指标是基于原子指标和维度组成的。指标体系的设计遵循用户第一、典型性、系统性和动态性原则,以反映业务现状并指导决策。搭建指标体系需要明确业务目标、关键业务流程,通过数据收集、分析和指标拆分,形成完整的指标系统。管理指标体系时要关注指标与业务的匹配度,避免频繁变更,定期维护以适应业务发展。应用场景包括电商、社交和金融理财,每个场景都有其特定的数据指标需求和业务逻辑。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

几个相关概念

算法原理 

什么是数据指标体系?

为什么要搭建数据指标体系?

数据指标的分类

原子指标

派生指标

数据指标体系设计原则

用户第一

典型性原则

系统性原则

动态性原则

数据标准规范的分类

搭建完整指标体系的步骤

1. 清晰的业务目标

2. 关键业务流程

3. 数据收集

4. 数据分析

5. 指标拆分和设计

6. 落地指标体系

7. 定期维护

怎么管理指标体系

1. 痛点分析

2. 管理目标

指标体系元数据管理

维度管理

指标管理

指标体系建设方法论

电商业务的数据指标

社交业务的数据指标

应用场景

1. 电商场景

2. 社区场景(人——货——场模型搭建)

3. 金融理财类APP(AARRR模型搭建)


 

前言

作为数据分析师,构建数据指标体系是较为基础但是极为重要的工作内容。好的指标体系能够监控业务变化,当业务出现问题时,分析师们通过指标体系进行问题回溯和下钻能够准确地定位到问题,反馈给业务让其解决相应的问题。这就是指标体系存在的意义和数据分析师的价值所在。对于数据指标建设体系,不同用户会有不同的数据需求,这就需要区分这个数据产品的服务对象是谁。比如企业级BI,它是为领导层服务,给领导看的,就要想领导想看什么样的数据,看了数据后又会做怎样的决策,如何根据展现的数据进行分析,如何安排工作改善指标,如何判断指标是否得到改善,如何执行闭环操作等。再如推荐类的数据产品,要明确用户是谁,他会更在乎什么样的指标。

数据指标的本质是:维度+度量 为什么这么说,大家想一想,我们实际业务场景看数据,是不是就是从不同维度看业务数据,比如我要看深圳地区的销售额,那么这里的地区就是维度,销售额就是度量。

所以指标建模过程中,只要抓住这个本质(维度+度量),就可以思路清晰地完成数据指标体系的建设。

几个相关概念

业务域:业务层面,对业务进行分类划分,以方便管理查询。举

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值