目录
前言
作为数据分析师,构建数据指标体系是较为基础但是极为重要的工作内容。好的指标体系能够监控业务变化,当业务出现问题时,分析师们通过指标体系进行问题回溯和下钻能够准确地定位到问题,反馈给业务让其解决相应的问题。这就是指标体系存在的意义和数据分析师的价值所在。对于数据指标建设体系,不同用户会有不同的数据需求,这就需要区分这个数据产品的服务对象是谁。比如企业级BI,它是为领导层服务,给领导看的,就要想领导想看什么样的数据,看了数据后又会做怎样的决策,如何根据展现的数据进行分析,如何安排工作改善指标,如何判断指标是否得到改善,如何执行闭环操作等。再如推荐类的数据产品,要明确用户是谁,他会更在乎什么样的指标。
数据指标的本质是:维度+度量 为什么这么说,大家想一想,我们实际业务场景看数据,是不是就是从不同维度看业务数据,比如我要看深圳地区的销售额,那么这里的地区就是维度,销售额就是度量。
所以指标建模过程中,只要抓住这个本质(维度+度量),就可以思路清晰地完成数据指标体系的建设。
几个相关概念
业务域:业务层面,对业务进行分类划分,以方便管理查询。举