LeeCode-三数之和(python)

本文介绍了一种改进的算法,用于在给定整数数组中查找满足a+b+c=0的不重复三元组,通过调整循环顺序减少时间复杂度。讲解了如何利用排序和双指针技巧将复杂度降低至O(N^2),同时节省空间。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给你一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?请你找出所有和为 0 且不重复的三元组。

注意:答案中不可以包含重复的三元组。

示例 1:

输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
示例 2:

输入:nums = []
输出:[]
示例 3:

输入:nums = [0]
输出:[]

提示:

0 <= nums.length <= 3000
-105 <= nums[i] <= 105

来源:力扣(LeetCode)
链接:https://leetcode.cn/problems/3sum

如果我们直接使用三重循环枚举三元组,会得到 O(N^3)个满足题目要求的三元组(其中 N 是数组的长度)时间复杂度至少为 O(N^3)。在这之后,我们还需要使用哈希表进行去重操作,得到不包含重复三元组的最终答案,又消耗了大量的空间。这个做法的时间复杂度和空间复杂度都很高,因此我们要换一种思路来考虑这个问题。

我们保持三重循环的大框架不变,只需要保证:

第二重循环枚举到的元素不小于当前第一重循环枚举到的元素;

第三重循环枚举到的元素不小于当前第二重循环枚举到的元素。

如果我们固定了前两重循环枚举到的元素 a 和 b,那么只有唯一的 c 满足 a+b+c=0a+b+c=0。当第二重循环往后枚举一个元素 b′时,由于 b' > b,那么满足 a+b'+c'=0 的 c′一定有 c' < c,即 c ′在数组中一定出现在 c 的左侧。也就是说,我们可以从小到大枚举 b,同时从大到小枚举 c,即第二重循环和第三重循环实际上是并列的关系。

class Solution:
    def threeSum(self, nums: List[int]) -> List[List[int]]:
        n = len(nums)
        nums.sort()
        ans = list()
        
        # 枚举 a
        for first in range(n):
            # 需要和上一次枚举的数不相同
            if first > 0 and nums[first] == nums[first - 1]:
                continue
            # c 对应的指针初始指向数组的最右端
            third = n - 1
            target = -nums[first]
            # 枚举 b
            for second in range(first + 1, n):
                # 需要和上一次枚举的数不相同
                if second > first + 1 and nums[second] == nums[second - 1]:
                    continue
                # 需要保证 b 的指针在 c 的指针的左侧
                while second < third and nums[second] + nums[third] > target:
                    third -= 1
                # 如果指针重合,随着 b 后续的增加
                # 就不会有满足 a+b+c=0 并且 b<c 的 c 了,可以退出循环
                if second == third:
                    break
                if nums[second] + nums[third] == target:
                    ans.append([nums[first], nums[second], nums[third]])
        
        return ans

复杂度分析

时间复杂度:O(N^2),其中 N 是数组nums 的长度。

空间复杂度:O(logN)。我们忽略存储答案的空间,额外的排序的空间复杂度为 O(logN)。然而我们修改了输入的数组nums,在实际情况下不一定允许,因此也可以看成使用了一个额外的数组存储了nums 的副本并进行排序,空间复杂度为 O(N)。

评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Lingxw_w

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值