参考自书籍《Hadoop+Spark 大数据巨量分析与机器学习》
1 编写测试程序例子
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import java.io.IOException;
import java.util.StringTokenizer;
public class WordCount {
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(WordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
private static class TokenizerMapper extends Mapper<Object, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable();
private Text word = new Text();
@Override
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
private static class IntSumReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
}
2 设置hadoop的依赖
$ vim ~/.bashrc
在最后面添加如下行并保存
export CLASSPATH=$($HADOOP_HOME/bin/hadoop classpath):$CLASSPATH
$ source ~/.bashrc //使配置生效
3 程序打包
$ mkdir ~/wordcount //先创建目录
$ rz //将本地的WordCount.java上传至当前目录
$ javac WordCount.java //编译程序
$ jar cf wc.jar WordCount*.class //打成jar包
$ ll //可看到如下图片
4 创建测试文本文件
$ mkdir -p ~/wordcount/input
$ cp ~/hadoop/LICENSE.txt ~/wordcount/input
//在hdfs创建目录
$ hdfs dfs -mkdir -p /user/hduser/wordcount/input
$ cd ~/wordcount/input
//上传文本文件到HDFS
$ hdfs dfs -copyFromLocal LICENSE.txt /user/hduser/wordcount/input
$ hdfs dfs -ls /user/hduser/wordcount/input //hdfs查看当前目录
5 运行WordCount.java
$ cd ~/wordcount
//运行程序,格式为“hadoop jar wc.jar [输入文件][输出目录]”,例子如下:
$ hadoop jar wc.jar WordCount /user/hduser/wordcount/input/LICENSE.txt /user/hduser/wordcount/output
//执行成功后,可见下面截图
$ hdfs dfs -ls /user/hduser/wordcount/output //有个success文件说明成功了,part-r-00000是运行结果文件
6 查看HDFS中的输出文件内容
$ hdfs dfs -cat /user/hduser/wordcount/output/part-r-00000|more