热红外图像增强是热成像领域中的重要技术之一,主要用于提高热红外图像的质量和可视化效果。热红外图像由于其独特的物理特性和应用场景,与可见光图像相比具有不同的特征和挑战。本文将介绍热红外图像增强算法,并详细说明四个以上的具体算法,分别是基于直方图均衡化的增强、基于自适应直方图均衡化的增强、基于Retinex理论的增强和基于小波变换的增强。
一、热红外图像增强的原理
热红外图像增强的原理主要是对原始热红外图像进行预处理和后处理,以提高图像的质量和可视化效果。预处理主要包括去除噪声、平滑化和去噪等,后处理主要包括增强图像的对比度、清晰度和边缘等。
二、基于直方图均衡化的增强
直方图均衡化是一种常见的图像增强算法,可将原始图像的直方图分布转换为均匀分布,以增强图像的对比度和清晰度。在热红外图像中,直方图均衡化可通过以下步骤实现: