Python机器学习进阶(一)

文章介绍了机器学习中的两种主要类型:监督学习和无监督学习。在监督学习中,涉及有目标值的分类问题(如K-近邻、贝叶斯分类、决策树、随机森林和逻辑回归)和无目标值的回归问题(如线性回归和岭回归)。无监督学习则主要关注无目标值的聚类算法。举例说明了天气预测是回归问题,而天气状况判断和人脸识别属于分类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习算法分类

----监督学习>>>>有目标值----------->分类问题,主要算法:K-近邻算法、贝叶斯分类、决策树与随机森林、逻辑回归

                   >>>>无目标值----------->回归问题,主要算法:线性回归、岭回归

----无监督学习>>>>无目标值,算法:聚类

     eg:明天天气多少度------回归问题;腼腆晴天还是阴天---分类问题;人脸识别----分类问题

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值