1103 缘分数 – PAT乙级真题

该程序旨在寻找指定区间 [m, n] 内的「缘分数」,即满足 a 和 a-1 的立方差是 b 和 b-1 平方和的平方的整数对 (a, b)。通过遍历区间,计算每个数 a 的立方差,并检查是否为平方数,然后枚举可能的 b 值,找到满足条件的 b。使用映射记录每个数 b 的平方和,提高效率。当找不到任何缘分数时,输出 'NoSolution'。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

所谓缘分数是指这样一对正整数 a 和 b,其中 a 和它的小弟 a−1 的立方差正好是另一个整数 c 的平方,而 c 正好是 b 和它的小弟 b−1 的平方和。例如 83−73=169=132,而 13=32+22,于是 8 和 3 就是一对缘分数。

给定 a 所在的区间 [m,n],是否存在缘分数?

输入格式:

输入给出区间的两个端点 0<m<n≤25000,其间以空格分隔。

输出格式:

按照 a 从小到大的顺序,每行输出一对缘分数,数字间以空格分隔。如果无解,则输出 No Solution

输入样例 1:

8 200

输出样例 1:

### 关于PAT乙级真题1010的题解 PAT乙级真题1010的题目名称为“一元多项式求导”。该题要求实现一个程序,对输入的一元多项式进行求导操作,并输出结果[^3]。 #### 题目描述 给定一个一元多项式,按照特定格式对其进行求导并输出结果。输入多项式的格式为一系列项,每一项由系数和指数组成,中间用空格分隔。例如,输入 `3 2` 表示 \(3x^2\),输出应为 `6 1`,表示 \(6x^1\)。 #### 题解思路 为了实现这一功能,可以按照以下逻辑编写代码: - 首先读取输入数据,将多项式的每一项提取出来。 - 对于每一项,计算其导数:将系数乘以指数作为新系数,指数减一作为新指数。 - 特别注意,如果某一项的指数为零,则该项求导后为零,无需输出。 - 最后将所有非零项按顺序输出。 以下是使用Java语言实现的一个示例代码: ```java import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner scanner = new Scanner(System.in); while (scanner.hasNext()) { int a = scanner.nextInt(); // 系数 int b = scanner.nextInt(); // 指数 if (b > 0) { System.out.print(a * b + " " + (b - 1)); if (scanner.hasNext()) { System.out.print(" "); } } } scanner.close(); } } ``` 上述代码实现了对输入多项式的逐项求导,并正确处理了指数为零的情况[^4]。 #### 注意事项 在解答此题时,需要注意以下几点: - 输入可能包含多个项,需逐一处理。 - 如果所有项的指数均为零,则最终输出应为空。 - 输出格式必须严格符合题目要求,避免多余的空格或换行。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值