分布式系统 —— 分布式线性回归的应用

        在本文中,你将学习如何在分布式环境中实现线性回归。

1. 题目背景

        假设每个节点i都可以访问以下观测数据:

        给定的公式y_i^k = ax_i^k + b + \epsilon_i^k 描述了每个节点观察到的线性关系,其中

        x_i^k是第 k次观察的已知输入。

        y_i^k是第 k次观察的已知输出。

        ab分别是未知的斜率系数和截距系数。

        \epsilon_i^k是均值为0、方差为1的未知正态噪声。


2. 任务1

2.1 任务1问题

        补全下图的代码,该代码将为每个节点生成观测数据。

var True_regressor float64 = 2
var True_intercept float64 = 5
var number_data int = 1000
x_values_node_1 := make([]float64, number_data)
y_values_node_1 := make([]float64, number_data)
x_values_node_2 := make([]float64, number_data)
y_values_node_2 := make([]float64, number_data)
x_values_node_3 := make([]float64, number_data)
y_values_node_3 := make([]float64, number_data)
s1 := rand.NewSource(time.Now().UnixNano())
r1 := rand.New(s1)
for i := 0; i < number_data; i++ {
var rnd = r1.NormFloat64()
x_values_node_1[i] = r1.Float64()
y_values_node_1[i] = //To complete
x_values_node_2[i] = //To complete
y_values_node_2[i] = //To complete
x_values_node_3[i] = //To complete
y_values_node_3[i] = //To complete
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

思诺学长-刘竞泽

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值