在本文中,你将学习如何在分布式环境中实现线性回归。
1. 题目背景
假设每个节点i都可以访问以下观测数据:
给定的公式 描述了每个节点观察到的线性关系,其中
是第
次观察的已知输入。
是第
次观察的已知输出。
和
分别是未知的斜率系数和截距系数。
是均值为0、方差为1的未知正态噪声。
2. 任务1
2.1 任务1问题
补全下图的代码,该代码将为每个节点生成观测数据。
var True_regressor float64 = 2
var True_intercept float64 = 5
var number_data int = 1000
x_values_node_1 := make([]float64, number_data)
y_values_node_1 := make([]float64, number_data)
x_values_node_2 := make([]float64, number_data)
y_values_node_2 := make([]float64, number_data)
x_values_node_3 := make([]float64, number_data)
y_values_node_3 := make([]float64, number_data)
s1 := rand.NewSource(time.Now().UnixNano())
r1 := rand.New(s1)
for i := 0; i < number_data; i++ {
var rnd = r1.NormFloat64()
x_values_node_1[i] = r1.Float64()
y_values_node_1[i] = //To complete
x_values_node_2[i] = //To complete
y_values_node_2[i] = //To complete
x_values_node_3[i] = //To complete
y_values_node_3[i] = //To complete
}