数组变幻与累加问题

问题描述

小M拥有一个长度为n的数组,该数组会每秒发生一次变幻。具体规则是:每次变幻,数组的第1个位置的数字与第2个位置的数字合并,数组的第3个位置的数字与第4个位置的数字合并,依次类推,直到只剩下两个数字为止。合并的规则是将两个数字相加。

小M希望知道数组在每次变幻后,数组的第一个数字会累加到一个初始值为0的变量x中,最后输出变量x的值。由于数据量可能非常大,最后的答案需要对 10^9+7 取模。

为了简化输入,数组是通过k条信息给出的,信息的形式为两个数组 a 和 b,其中 a[i] 表示数组中有 a[i] 个数字 b[i]


测试样例

样例1:

输入:n = 5 ,k = 5,a = [1, 1, 1, 1, 1] ,b = [1, 2, 3, 4, 5]
输出:13

样例2:

输入:n = 7 ,k = 2,a = [3, 4] ,b = [1, 2]
输出:7

样例3:

输入:n = 10 ,k = 2,a = [3, 7] ,b = [1, 2]
输出:20

Python解题

思路说明

题目要求模拟一个数组每秒的变幻过程,每次变幻将相邻的两个数字合并,直到数组中只剩下两个数字为止。每次变幻后,数组的第一个数字会被累加到一个初始值为0的变量x中,最后输出变量x的值。由于数据量可能非常大,最后的答案需要对 109+7 取模。

为了简化输入,数组是通过k条信息给出的,信息的形式为两个数组 a 和 b,其中 a[i] 表示数组中有 a[i] 个数字 b[i]

我们可以使用队列来模拟这个过程,每次从队列中取出两个数字进行合并,并将结果重新放回队列中。每次合并后,累加第一个数字到结果中,并继续进行下一次合并,直到队列中只剩下两个数字为止。

解题过程

  1. 初始化队列:将输入的 a 和 b 数组转换为队列 q,其中每个元素是一个元组 (count, value),表示有 count 个 value
  2. 模拟合并过程
    • 使用 ok 函数判断队列中是否还有超过两个数字。
    • 每次从队列中取出两个数字进行合并,并将结果重新放回队列中。
    • 如果队列中只剩下一个数字,直接将其放回队列中。
    • 每次合并后,累加第一个数字到结果 ans 中。
  3. 取模操作:由于数据量可能非常大,每次累加后需要对 109+7 取模。
  4. 返回结果:最终返回累加的结果 ans

复杂度分析

  • 时间复杂度:每次合并操作的时间复杂度为 O(1),总共需要进行 O(n) 次合并操作,因此总的时间复杂度为 O(n)。
  • 空间复杂度:使用了一个队列来存储数组元素,队列的最大长度为 O(n),因此空间复杂度为 O(n)。

知识点扩展

  • 队列数据结构:队列是一种先进先出(FIFO)的数据结构,适合用于模拟需要按顺序处理的问题。
  • 模拟算法:模拟算法通过模拟问题的实际过程来解决问题,适合用于处理需要逐步操作的问题。
  • 取模运算:在处理大数问题时,取模运算可以防止结果溢出,保证结果在合理范围内。

代码实现

def solution(n: int, k: int, a: list, b: list) -> int:
    assert k == len(a)
    assert k == len(b)
    assert n == sum(a)

    def ok(v):
        t = 0
        for x, y in v:
            t += x
            if t > 2:
                return True
        return False

    q = []
    for x, y in zip(a, b):
        q.append((x, y))
    mod = int(1e9 + 7)
    ans = 0
    while ok(q):
        q2 = []
        while q:
            if q[0][0] == 0:
                q.pop(0)
            elif q[0][0] == 1:
                if len(q) >= 2:
                    q[1] = (q[1][0] - 1, q[1][1])
                    q2.append((1, (q[0][1] + q[1][1]) % mod))
                else:
                    q2.append((1, q[0][1]))
                q.pop(0)
            else:
                q2.append((q[0][0] >> 1, (q[0][1] << 1) % mod))
                q[0] = (q[0][0] & 1, q[0][1])

        ans = (ans + q2[0][1]) % mod
        q = q2

    return ans


if __name__ == '__main__':
    print(solution(n = 5 ,k = 5,a = [1, 1, 1, 1, 1] ,b = [1, 2, 3, 4, 5]) == 13)
    print(solution(n = 7 ,k = 2,a = [3, 4] ,b = [1, 2]) == 7)
    print(solution(n = 10 ,k = 2,a = [3, 7] ,b = [1, 2]) == 20)

C++解题

问题理解

  1. 数组变幻规则

    • 每秒数组的第1个位置的数字与第2个位置的数字合并,第3个位置的数字与第4个位置的数字合并,依次类推。
    • 合并的规则是将两个数字相加。
    • 这个过程会一直持续,直到数组中只剩下两个数字为止。
  2. 累加规则

    • 每次变幻后,数组的第一个数字会累加到一个初始值为0的变量x中。
    • 最终输出变量x的值,并且需要对 109+7 取模。
  3. 输入格式

    • 数组是通过k条信息给出的,信息的形式为两个数组 a 和 b
    • a[i] 表示数组中有 a[i] 个数字 b[i]

代码实现

#include <iostream>
#include <vector>
#include <queue>
#include <assert.h>
#include <numeric>
using namespace std;

const int MOD = 1e9 + 7;

int solution(int n, int k, vector<int> a, vector<int> b) {
    assert(k == a.size());
    assert(k == b.size());
    assert(n == accumulate(a.begin(), a.end(), 0));

    auto ok = [](const vector<pair<int, int>>& v) {
        int t = 0;
        for (const auto& [x, y] : v) {
            t += x;
            if (t > 2) return true;
        }
        return false;
    };

    vector<pair<int, int>> q;
    for (int i = 0; i < k; ++i) {
        q.emplace_back(a[i], b[i]);
    }

    int ans = 0;
    while (ok(q)) {
        vector<pair<int, int>> q2;
        while (!q.empty()) {
            if (q[0].first == 0) {
                q.erase(q.begin());
            } else if (q[0].first == 1) {
                if (q.size() >= 2) {
                    q[1].first -= 1;
                    q2.emplace_back(1, (q[0].second + q[1].second) % MOD);
                } else {
                    q2.emplace_back(1, q[0].second);
                }
                q.erase(q.begin());
            } else {
                q2.emplace_back(q[0].first >> 1, (q[0].second << 1) % MOD);
                q[0].first &= 1;
            }
        }

        ans = (ans + q2[0].second) % MOD;
        q = move(q2);
    }

    return ans;
}

int main() {
    cout << (solution(5, 5, {1, 1, 1, 1, 1}, {1, 2, 3, 4, 5}) == 13) << endl;
    cout << (solution(7, 2, {3, 4}, {1, 2}) == 7) << endl;
    cout << (solution(10, 2, {3, 7}, {1, 2}) == 20) << endl;
    return 0;
}
P1007小核桃数组变换 普及/提高- CSP-J组 前缀和 标准IO 传统题 来源 TomAnderson 时间限制 1000ms 内存限制 256MB 通过/尝试次数 803/1320 题目描述 一个长度为 𝑛 n 的数组,每秒都在发生变幻。 每一次变幻,第 1 个位置的数字将会和第 2 个位置的数字合并,第 3 个位置的数字将会和第 4 个位置的数字合并,以此类推。。 这个数组会一直变幻到只剩两个数字为止。 合并数字时,将会使得两个数字相加。例如数组 [1,2,3,4,5] 第一秒会变成 [3,7,5](前两个数字合并,第三和第四个数字合并,由于没有第六个数字,所以第五个数字不变)第二秒会变成 [10, 5],此时数组中只剩两个数字,变幻结束。 现在小核桃想知道最后的两个数字的平方和是多少。例如上述数组,平方和为 10*10 + 5*5 = 125 由于这个数组长度很大,所以小核桃在给你数据时采用了一种新的方式。小核桃总共会给出 𝑘 k 条信息,每条信息包含两个正整数 𝑎 , 𝑏 a,b,表示这个数组中有一段长度为 𝑎 a 的区间,区间中所有数字均为 𝑏 b。(详见样例) 由于答案可能很大,请对 1 0 9 + 7 10 9 +7 取模 输入格式 第一行给出两个正整数 𝑛 , 𝑘 n,k,意义如题面所示。 接下来 𝑘 k 行分别给出两个正整数 𝑎 , 𝑏 a,b。表示数组有 𝑎 a 个数字 𝑏 b。注意,本题保证所有 𝑎 a 的和为 𝑛 n, 𝑏 b 的数据范围至多 100。 输出格式 输出变幻到最后的两个数字的平方和。 样例 #1 样例输入 #1 运行 复制 5 5 1 1 1 2 1 3 1 4 1 5 样例输出1 复制 125 样例 #2 样例输入 #2 运行 复制 7 2 3 1 4 2 样例输出 #2 复制 61 数据范围及提示 【样例解释 #1】 样例中给出 1 个 1,1 个 2,1 个 3,1 个 4, 1 个 5。数组的内容和合并过程就是题面中的示例,答案为 125。 【样例解释 #2】 样例中给出了 3 个 1 和 4 个 2,即数组为 [1,1,1,2,2,2,2],第一秒变为 [2,3,4,2],第二秒变为 [5,6],此时数组只剩两个数字,我们对其求平方和,得到 5*5+6*6 = 61 【数据范围】 对于 30% 的数据,满足 1 ≤ 𝑘 ≤ 𝑛 ≤ 1 0 3 1≤k≤n≤10 3 对于 60% 的数据,满足 1 ≤ 𝑛 ≤ 1 0 5 1≤n≤10 5 对于 80% 的数据,满足 1 ≤ 𝑛 ≤ 1 0 10 1≤n≤10 10 对于 100% 的数据,满足 1 ≤ 𝑎 𝑖 ≤ 𝑛 < 1 0 18 , 1 ≤ 𝑘 ≤ 1 0 5 1≤a i ​ ≤n<10 18 ,1≤k≤10 5 。请注意,答案要对 1 0 9 + 7 10 9 +7 进行取模
06-03
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值