cv::Mat与ncnn::Mat之间相互转换 (mark)

本文介绍了如何在OpenCV和ncnn之间进行矩阵数据类型的转换,包括颜色空间调整(RGB/BGR)、单/多通道转换以及避免数据复制的方法,同时提到了标准化操作的需求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

opencv to ncnn

cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + swap RGB/BGR

// cv::Mat a(h, w, CV_8UC3);
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB, a.cols, a.rows);

cv::Mat CV_8UC3 -> ncnn::Mat 3 channel + keep RGB/BGR order

// cv::Mat a(h, w, CV_8UC3);
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_RGB, a.cols, a.rows);

cv::Mat CV_8UC3 -> ncnn::Mat 1 channel + do RGB2GRAY/BGR2GRAY

// cv::Mat rgb(h, w, CV_8UC3);
ncnn::Mat inrgb = ncnn::Mat::from_pixels(rgb.data, ncnn::Mat::PIXEL_RGB2GRAY, rgb.cols, rgb.rows);
// cv::Mat bgr(h, w, CV_8UC3);
ncnn::Mat inbgr = ncnn::Mat::from_pixels(bgr.data, ncnn::Mat::PIXEL_BGR2GRAY, bgr.cols, bgr.rows);

cv::Mat CV_8UC1 -> ncnn::Mat 1 channel

// cv::Mat a(h, w, CV_8UC1);
ncnn::Mat in = ncnn::Mat::from_pixels(a.data, ncnn::Mat::PIXEL_GRAY, a.cols, a.rows);

cv::Mat CV_32FC1 -> ncnn::Mat 1 channel
You could construct ncnn::Mat and fill data into it directly to avoid data copy

// cv::Mat a(h, w, CV_32FC1);
ncnn::Mat in(a.cols, a.rows, 1, (void*)a.data);
in = in.clone();

cv::Mat CV_32FC3 -> ncnn::Mat 3 channel
You could construct ncnn::Mat and fill data into it directly to avoid data copy

// cv::Mat a(h, w, CV_32FC3);
ncnn::Mat in_pack3(a.cols, a.rows, 1, (void*)a.data, (size_t)4u * 3, 3);
ncnn::Mat in;
ncnn::convert_packing(in_pack3, in, 1);

std::vector < cv::Mat > + CV_32FC1 -> ncnn::Mat multiple channels
You could construct ncnn::Mat and fill data into it directly to avoid data copy

// std::vector<cv::Mat> a(channels, cv::Mat(h, w, CV_32FC1));
int channels = a.size();
ncnn::Mat in(a[0].cols, a[0].rows, channels);
for (int p=0; p<in.c; p++)
{
    memcpy(in.channel(p), (const uchar*)a[p].data, in.w * in.h * sizeof(float));
}

ncnn to opencv

ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + swap RGB/BGR
You may need to call in.substract_mean_normalize() first to scale values from 0…1 to 0…255

// ncnn::Mat in(w, h, 3);
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_BGR2RGB);

ncnn::Mat 3 channel -> cv::Mat CV_8UC3 + keep RGB/BGR order
You may need to call in.substract_mean_normalize() first to scale values from 0…1 to 0…255

// ncnn::Mat in(w, h, 3);
cv::Mat a(in.h, in.w, CV_8UC3);
in.to_pixels(a.data, ncnn::Mat::PIXEL_RGB);

ncnn::Mat 1 channel -> cv::Mat CV_8UC1
You may need to call in.substract_mean_normalize() first to scale values from 0…1 to 0…255

// ncnn::Mat in(w, h, 1);
cv::Mat a(in.h, in.w, CV_8UC1);
in.to_pixels(a.data, ncnn::Mat::PIXEL_GRAY);

ncnn::Mat 1 channel -> cv::Mat CV_32FC1
You could consume or manipulate ncnn::Mat data directly to avoid data copy

// ncnn::Mat in;
cv::Mat a(in.h, in.w, CV_32FC1);
memcpy((uchar*)a.data, in.data, in.w * in.h * sizeof(float));

ncnn::Mat 3 channel -> cv::Mat CV_32FC3
You could consume or manipulate ncnn::Mat data directly to avoid data copy

// ncnn::Mat in(w, h, 3);
ncnn::Mat in_pack3;
ncnn::convert_packing(in, in_pack3, 3);
cv::Mat a(in.h, in.w, CV_32FC3);
memcpy((uchar*)a.data, in_pack3.data, in.w * in.h * 3 * sizeof(float));

ncnn::Mat multiple channels -> std::vector < cv::Mat > + CV_32FC1
You could consume or manipulate ncnn::Mat data directly to avoid data copy

// ncnn::Mat in(w, h, channels);
std::vector<cv::Mat> a(in.c);
for (int p=0; p<in.c; p++)
{
    a[p] = cv::Mat(in.h, in.w, CV_32FC1);
    memcpy((uchar*)a[p].data, in.channel(p), in.w * in.h * sizeof(float));
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

mingo_敏

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值