🔥低光图像增强新突破!HVI 色彩空间 + CIDNet 网络如何攻克红黑噪声难题?
深度学习论文: HVI: A New Color Space for Low-light Image Enhancement
HVI: A New Color Space for Low-light Image Enhancement
PDF: https://arxiv.org/abs/2502.20272
PyTorch代码: https://github.com/shanglianlm0525/CvPytorch
PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks
1 概述
低光照图像增强(LLIE)作为计算机视觉领域的核心任务,旨在从退化的暗光图像中恢复清晰细节。传统基于标准 RGB(sRGB)空间的增强方法,由于对颜色变化过于敏感,常导致图像出现明显的色彩偏移和亮度失真。尽管转换到 HSV(色调 / 饱和度 / 明度)空间能部分改善亮度问题,但却引发了更为棘手的红色区域断层和暗部噪声放大问题。
针对这一挑战,本文创新性地提出了专为低光增强设计的 HVI(水平 - 垂直 - 强度)色彩空间。该方案通过两大核心技