Qwen2的各模型性能、占用显存和推理速度比较(摘自官方文档)

Qwen2的各模型性能、占用显存和推理速度比较(摘自官方文档)

性能

在这里插入图片描述

推理速度(从大到小)

72B

在这里插入图片描述
在这里插入图片描述

57B-A14B

在这里插入图片描述

7B

在这里插入图片描述

Qwen3 Qwen1.5 的推理速度对比主要取决于模型的大小、架构优化程度以及具体的硬件环境。以下是详细的分析代码示例,帮助你理解两者的性能差异。 --- ### 代码实现:测试 Qwen3 Qwen1.5 的推理速度 以下是一个使用 Python 测试 Qwen3 Qwen1.5 推理速度的代码示例: ```python import time from transformers import AutoTokenizer, AutoModelForCausalLM # 加载 Qwen3 模型 tokenizer_qwen3 = AutoTokenizer.from_pretrained("Qwen/Qwen3") model_qwen3 = AutoModelForCausalLM.from_pretrained("Qwen/Qwen3") # 加载 Qwen1.5 模型 tokenizer_qwen1_5 = AutoTokenizer.from_pretrained("Qwen/Qwen1.5") model_qwen1_5 = AutoModelForCausalLM.from_pretrained("Qwen/Qwen1.5") # 定义输入文本 input_text = "请生成一段关于人工智能的文章。" input_ids_qwen3 = tokenizer_qwen3.encode(input_text, return_tensors="pt") input_ids_qwen1_5 = tokenizer_qwen1_5.encode(input_text, return_tensors="pt") # 测试 Qwen3 的推理速度 start_time = time.time() output_qwen3 = model_qwen3.generate(input_ids_qwen3, max_length=100) end_time = time.time() qwen3_inference_time = end_time - start_time print(f"Qwen3 推理时间: {qwen3_inference_time:.4f} 秒") print("Qwen3 输出:", tokenizer_qwen3.decode(output_qwen3[0], skip_special_tokens=True)) # 测试 Qwen1.5 的推理速度 start_time = time.time() output_qwen1_5 = model_qwen1_5.generate(input_ids_qwen1_5, max_length=100) end_time = time.time() qwen1_5_inference_time = end_time - start_time print(f"Qwen1.5 推理时间: {qwen1_5_inference_time:.4f} 秒") print("Qwen1.5 输出:", tokenizer_qwen1_5.decode(output_qwen1_5[0], skip_special_tokens=True)) ``` --- ### 上述代码解释 1. **加载模型**: - 使用 `transformers` 库分别加载 Qwen3 Qwen1.5 模型。 - `AutoTokenizer` 用于将文本转换为模型可接受的 token 格式。 - `AutoModelForCausalLM` 用于加载因果语言模型2. **定义输入文本**: - 输入文本为 `"请生成一段关于人工智能的文章。"`,这是一个简单的提示。 3. **测试推理速度**: - 使用 `time.time()` 记录模型生成输出所需的时间。 - `generate` 方法用于生成文本,`max_length=100` 表示生成的最大长度为 100。 4. **输出结果**: - 打印每个模型推理时间生成的文本内容。 --- ### 性能对比分析 1. **模型大小**: - Qwen3 是一个更大、更复杂的模型,参数量更多,因此其推理速度通常比 Qwen1.5 更慢。 - Qwen1.5 是一个轻量化版本的模型,参数量较少,适合对推理速度要求较高的场景。 2. **硬件环境**: - 在 GPU 上运行时,Qwen3 可以利用更高的并行计算能力,缩小与 Qwen1.5 的速度差距。 - 在 CPU 上运行时,Qwen1.5 的优势更加明显,因为其计算复杂度较低。 3. **具体场景**: - 如果需要高质量的生成结果(如复杂对话或长篇文档生成),Qwen3 是更好的选择。 - 如果需要快速响应(如实时问答系统),Qwen1.5 更加合适。 --- ### 实际测试结果示例 假设在 NVIDIA A100 GPU 上运行上述代码,可能得到如下结果: - Qwen3 推理时间: 0.85 秒 - Qwen1.5 推理时间: 0.45 秒 可以看到,Qwen1.5 的推理速度更快,但生成质量可能略低于 Qwen3。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小怪兽会微笑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值