等值式
判断两个公式A与B是否等值的最直接方法是用真值表法判断A
↔
\leftrightarrow
↔B是否为重言式。
证明公式等值的另一个方法是利用已知的等值式通过代换得到新的等值式。
16组常用重要的等值式模式
等值演算:由已知的等值式推演出另外一些等值式的过程
公式之间的等值关系具有自反性、对称性和传递性
如何验证两个公式不等值?
1、真值表法
2、观察法
3、当两个式子比较复杂时,可以先通过等值演算将它们化成容易观察真值的情况,再进行判断
析取范式与合取范式
文字——命题变项及其否定
简单析取式——仅由有限个文字构成的析取式
简单合取式——仅由有限个文字构成的合取式
析取范式——由有限个简单合取式的析取构成的命题
合取范式——由有限个简单析取式的合取构造的命题
范式——析取范式与合取范式的统称
注意,一个文字既是简单析取式,又是简单合取式
析取范式和合取范式的性质:
(1)一个析取范式是矛盾式当且仅当它的每个简单合取式都是矛盾式
(2)一个合取范式是重言式当且仅当它的每个简单析取式都是重言式
联结词的完备集
联结词完备集:设S是一个联结词集合,如果任何n(
n
≥
1
n\ge1
n≥1)元真值函数都可以由仅含S中的联结词构成的公式表示,则称S是联结词完备集