数学期望
一些常用的离散型随机变量的数学期望
1(0—1分布):
E ( X ) = p \quad E(X)=p E(X)=p
\quad 任意事件的示性函数的数学期望等于它的概率
2(二项分布):
E ( X ) = n p \quad E(X)=np E(X)=np
3(泊松分布):
E ( X ) = λ \quad E(X)=\lambda E(X)=λ
4(几何分布):
E ( X ) = 1 p \quad E(X)=\frac 1 p E(X)=p1
连续型随机变量的数学期望
一些常用的连续型随机变量的数学期望
1(均匀分布):
E ( X ) = a + b 2 \quad E(X)=\frac {a+b} 2 E(X)=2a+b
2(指数分布):
E ( X ) = 1 λ \quad E(X)=\frac 1 \lambda E(X)=λ1
3(正态分布):
E ( X ) = μ \quad E(X)=\mu E(X)=μ
4(柯西分布):
E ( X ) 不 存 在 \quad E(X)不存在 E(X)不存在
随机变量函数的数学期望