随机变量的数字特征与极限定理

本文探讨了随机变量的数学期望,包括离散型和连续型随机变量的期望值,以及数学期望的性质。同时介绍了方差、协方差、相关系数及其性质。此外,讲解了大数定律,如切比雪夫不等式和伯努利大数定律,以及中心极限定理在概率论中的重要应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

数学期望

在这里插入图片描述
一些常用的离散型随机变量的数学期望

1(0—1分布):
E ( X ) = p \quad E(X)=p E(X)=p
\quad 任意事件的示性函数的数学期望等于它的概率
2(二项分布):
E ( X ) = n p \quad E(X)=np E(X)=np
3(泊松分布):
E ( X ) = λ \quad E(X)=\lambda E(X)=λ
4(几何分布):
E ( X ) = 1 p \quad E(X)=\frac 1 p E(X)=p1

连续型随机变量的数学期望
在这里插入图片描述
一些常用的连续型随机变量的数学期望

1(均匀分布):
E ( X ) = a + b 2 \quad E(X)=\frac {a+b} 2 E(X)=2a+b
2(指数分布):
E ( X ) = 1 λ \quad E(X)=\frac 1 \lambda E(X)=λ1
3(正态分布):
E ( X ) = μ \quad E(X)=\mu E(X)=μ
4(柯西分布):
E ( X ) 不 存 在 \quad E(X)不存在 E(X)

随机变量函数的数学期望
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值