【深度学习】详解集成学习的投票和Stacking机制

本文详细介绍了集成学习中的投票机制,包括硬投票和软投票的概念和区别。通过实例展示了如何在PyTorch中利用投票机制进行手写数字分类。此外,文章还探讨了Stacking原理及其在二分类问题中的应用,以及在Kaggle气胸病灶图像分割挑战中的顶级解决方案。

【深度学习】详解集成学习的投票和Stacking机制

在这里插入图片描述

文章目录
1 基础原理
	1.1 硬投票
	1.2 软投票
2 pytorch综合多个弱分类器,投票机制,进行手写数字分类(boosting)
3 Stacking原理
4 Stacking分类应用
5 kaggle气胸病灶图像分割top4解决方案

1 基础原理

在所有集成学习方法中,最直观的是多数投票。因为其目的是输出基础学习者的预测中最受欢迎(或最受欢迎)的预测。多数投票是最简单的集成学习技术,它允许多个基本学习器的预测相结合。与选举的工作方式类似,该算法假定每个基础学习器都是投票者,每个类别都是竞争者。为了选出竞争者为获胜者,该算法会考虑投票。将多种预测与投票结合起来的主要方法有两种:一种是硬投票,另一种是软投票。我们在这里介绍两种方法。
在这里插入图片描述
这种投票分类器往往比单个的最佳分类器获得更高的准确率。事实上,即使每个分类器都是一个弱的学习者(意味着它只比随机猜测稍微好一点),如果有足够多的弱学习者并且他们足够多样化,那么最终集成

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值