P1613 跑路题解 【C++ 版本】

本文介绍了一道算法题,涉及如何利用空间跑路器在限定时间内从家到公司。问题转化为求有向图中最短路径,通过倍增预处理结合Floyd算法找到最小秒数。题目保证了存在至少一条从家到公司的路径,且路径长度不超过最大整数限制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

跑路

题目描述

小A的工作不仅繁琐,更有苛刻的规定,要求小A每天早上在6:00之前到达公司,否则这个月工资清零。可是小A偏偏又有赖床的坏毛病。于是为了保住自己的工资,小A买了一个十分牛B的空间跑路器,每秒钟可以跑2^k千米(k是任意自然数)。当然,这个机器是用longint存的,所以总跑路长度不能超过maxlongint千米。小A的家到公司的路可以看做一个有向图,小A家为点1,公司为点n,每条边长度均为一千米。小A想每天能醒地尽量晚,所以让你帮他算算,他最少需要几秒才能到公司。数据保证1到n至少有一条路径。

输入格式

第一行两个整数n,m,表示点的个数和边的个数。

接下来m行每行两个数字u,v,表示一条u到v的边。

输出格式

一行一个数字,表示到公司的最少秒数。

样例 #1

样例输入 #1

4 4
1 1
1 2
2 3
3 4

样例输出 #1

1

提示

【样例解释】

1->1->2->3->4,总路径长度为4千米,直接使用一次跑路器即可。

【数据范围】

50%的数据满足最优解路

过河卒是一个典型的动态规划问题。首先,我们将整个棋盘看作一个二维数组,数组的每个元素表示到达该位置的路径数目。然后,我们根据题目给出的条件,逐步更新数组中的元素,直到计算出到达目标位置的路径数目。 具体的解题思路如下: 1. 首先,我们可以将马的位置设置为0,表示无法经过该位置。 2. 然后,我们根据马的位置,更新数组中的元素。对于二维数组中的每个位置,我们根据左边和上边的位置来计算到达当前位置的路径数目。具体地,如果左边和上边的位置都可以经过,那么到达当前位置的路径数目就等于左边和上边位置的路径数目之和。如果左边或上边的位置无法经过,那么到达当前位置的路径数目就等于左边或上边位置的路径数目。 3. 最后,我们输出目标位置的路径数目。 下面是洛谷p1002过河卒题解C++代码: ```cpp #include <bits/stdc++.h> using namespace std; int main() { long long a[21][21]; int x1, y1, x2, y2; cin >> x1 >> y1 >> x2 >> y2; // 初始化数组,马的位置设置为0 for(int i=0; i<=20; i++) { for(int k=0; k<=20; k++) { a[i][k] = 1; } } a[x2][y2] = 0; // 根据马的位置更新数组中的元素 if(x2 >= 2 && y2 >= 1) a[x2-2][y2-1] = 0; if(x2 >= 1 && y2 >= 2) a[x2-1][y2-2] = 0; if(x2 <= 18 && y2 >= 1) a[x2+2][y2-1] = 0; if(x2 <= 19 && y2 >= 2) a[x2+1][y2-2] = 0; if(x2 >= 2) a[x2-2][y2+1] = 0; if(x2 >= 1) a[x2-1][y2+2] = 0; if(y2 >= 1) a[x2+2][y2-1] = 0; if(y2 >= 2) a[x2+1][y2-2] = 0; // 动态规划计算路径数目 for(int i=1; i<=20; i++) { for(int k=1; k<=20; k++) { if(a[i][k] != 0) { a[i][k] = a[i-1][k] + a[i][k-1]; } } } // 输出目标位置的路径数目 cout << a[x1][y1] << endl; return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值