ICCV 2023:探索基于生成模型的 Backbone 预训练(DreamTeacher)

本文介绍了DreamTeacher,一种基于生成模型的预训练框架,用于无监督和半监督学习。该框架利用预训练的生成网络对目标图像Backbone进行知识蒸馏,提升了下游任务的性能。实验表明,这种方法在大规模无标签数据集上优于传统自监督学习方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ICCV 2023:探索基于生成模型的 Backbone 预训练

目录

  • 前言
  • 相关工作
    • Discriminative Representation Learning
    • Generative Representation Learning
  • DreamTeacher 框架介绍
    • Unsupervised Representation Learning
    • Label-Guided Representation Learning
  • 实验
  • 总结
  • 参考

前言

请添加图片描述

我们这次要介绍的文章被接收在 ICCV 2023 上,题为:DreamTeacher: Pretraining Image Backbones with Deep Generative Models,我认为是个挺强挺有趣的自监督方面的工作。DreamTeacher 用于从预训练的生成网络向目标图像 Backbone 进行知识蒸馏,作为一种通用的预训练机制,不需要标签。这篇文章中研究了特征蒸馏,并在可能有任务特定标签的情况下进行标

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值