IPMI 2023:Test Time Adaptation 的医学图像分割解决

本文介绍了在 IPMI 2023会议上发表的研究,提出了一种名为UPL-TTA的全测试时间适应方法,用于改善深度学习模型在医学图像分割中的性能。UPL-TTA利用Test Time Growing生成伪标签,并结合不确定性估计进行监督,从而在不依赖源模型训练策略的情况下,适应目标领域的数据分布。实验结果显示,该方法在跨模态的胎儿脑分割任务上优于现有TTA技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

  • 前言
  • 概述
  • 具体实现
  • 实验
  • 总结
  • 参考

前言

这次我们要解读的工作发表在 IPMI 2023(IPMI全名 Information Processing in Medical Imaging,两年一届,是医学影像分析处理领域公认的最具特色的会议),同时也是 Test Time Adaptation 系列的文章,之前的 TTA 论文解决在:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

理想不闪火

你的鼓励将是我最大的动力!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值