【文生图】Win10环境借助基于ComfyUI的图狗2.3.1抢先体验阿里万相wan2.1

【文生视频】Win10环境借助基于ComfyUI的图狗2.3.1抢先体验阿里万相wan2.1

前言

上周【也就是20250225】阿里云视觉生成基座模型万相2.1(Wan)宣布开源!

Github: https://github.com/Wan-Video/Wan2.1

HuggingFace:https://huggingface.co/spaces/Wan-AI/Wan2.1

魔搭社区:https://modelscope.cn/studios/Wan-AI/Wan-2.1

分为1.3B小模型和14B大模型,其中1.3B小模型只能用于文生图/480P的视频,14B大模型额外支持图生视频/720P视频。借助于类似Topaz等AI软件,将视频拉到4K240Fps并不难。尤其是1.3B小模型只需要8GB多一点的显存就可以勉强运行起来,适合我等经济困难的贫民窟难民使用!!!

最新的好消息是Wan2.1已经集成了ComfyUI:

在这里插入图片描述

但是笔者还没有部署过它,并且为了防止复杂的环境配置产生新问题,更倾向于使用类似容器化等方式减少环境方面的影响。

感谢B站大佬【灵仙儿和二狗子】封装好的一键启动包,自带所需的Python环境,解压即用,麻麻再也不用担心我的运维能力有待提高了:

https://www.bilibili.com/video/BV1cG9uYNEs7

整合包由于自带了1.3B小模型和14B大模型导致RAR压缩包比较大,下载后需要140GB解压,启动后加载模型也很慢,建议有条件的最好放SSD,放HDD的话只要内存够大其实也只有首次初始化加载时很慢。

其他大佬也有提供类似的一键启动包,B站是个好大学。。。

导入缺失的模型

虽然叫整合包,但还是缺了一个模型:v1-5-pruned-emaonly-fp16.safetensors

下载好放置到启动包下即可:

E:\soft\ergouzi\ComfyUIwan2.1\models\checkpoints

启动图狗

在这里插入图片描述

双击启动即可。

在这里插入图片描述

使用自带的控制台启动,可以防止误关闭CMD命令。启动后还需要导入一个ComfyUIJson,此时会出现一个画布:

在这里插入图片描述

民用小显卡就不用尝试图生视频了,别问我为神马知道的!!!

文生视频

笔者启用了第二个开关。

在这里插入图片描述

老老实实选1.3B的小模型。

在这里插入图片描述

提示词可以是中文也可以是英文。选好后就可以启动。

负载情况

在这里插入图片描述

可以看出主要是GPUCuda负载比较高,丽台RTX A4000的16GB显存接近打满了!!!HDD加载速度慢、刀卡性能偏低导致耗时比较长。效果还是不错的。

输出

在这里插入图片描述

虽然叫做文生视频,但实际上生成的是个webp的动图!!!拆帧及重新序列化、卷积拉高分辨率、插帧素质三联就不用笔者演示了,相信每一杆资深大数据学徒工都已掌握!!!

尾言

2025年注定是不平凡的一年,从DeepSeek开始到混元Wan2.1,陆续开源了好多优秀的模型,让我等庶民也能私有化部署,白piao科学技术进步的成果!!!没有刀卡的童鞋们近期也可以白piao比如即梦可灵大模型。后续成熟了,再试试ComfyUI原生部署Wan2.1

转载请注明出处:https://lizhiyong.blog.csdn.net/article/details/146030135

在这里插入图片描述

### Wan 2.1 文生模型本地部署方法教程 #### 显卡信息检查 在开始之前,需确认计算机中的 GPU 是否满足运行需求。通过命令行工具可以检测显卡的关参数以及驱动版本是否适配深度学习框架的要求[^1]。 ```bash nvidia-smi ``` 此命令会显示当前 NVIDIA 驱动程序版本、CUDA 版本、GPU 使用率以及其他重要细节。 --- #### 模型下载与安装 对于文本到像 (T2V) 的生成任务,可选用较小规模的 `Wan2.1-T2V-1.3B` 或更大规模的 `Wan2.1-T2V-14B` 模型。具体操作如下: ##### 安装 ModelScope 工具 ModelScope 是阿里云提供的一种便捷方式来管理模型资源。首先需要确保已安装该工具并完成配置[^3]。 ```bash pip install modelscope ``` ##### 下载目标模型 执行以下命令以获取所需模型文件至指定目录。如果硬件条件允许,建议选择更高质量的大规模模型(如 14B 参数量级),否则推荐轻量化的小规模模型(如 1.3B 参数量级)。 ```bash modelscope download Wan-AI/Wan2.1-T2V-1.3B --local_dir ./Wan2.1-T2V-1.3B ``` 或者替换为大规模模型路径: ```bash modelscope download Wan-AI/Wan2.1-T2V-14B --local_dir ./Wan2.1-T2V-14B ``` 上述过程将自动拉取预训练权重及关依赖项,并存储于指定位置以便后续调用。 --- #### 运行环境搭建 为了支持复杂计算任务,在本地环境中还需额外准备若干组件,包括但不限于 Python 解释器及其扩展库、PyTorch/Diffusers 库等基础架构软件包。 ##### 创建虚拟环境 构建独立开发空间有助于隔离不同项目间的冲突问题。 ```bash conda create -n wan21 python=3.8 conda activate wan21 ``` ##### 安装必要依赖 依据官方文档指引加载必需模块集合。 ```bash pip install torch torchvision torchaudio diffusers transformers accelerate safetensors bitsandbytes xformers gradio ``` 这些库共同构成了完整的推理管线支撑体系结构[^2]。 --- #### 启动服务端口监听机制 最后一步便是激活前端界面交互入口点,使得用户能够直观提交输入数据并通过形化展示最终成果形式。 启动脚本通常位于解压后的根目录下,双击运行或手动触发均可生效。 ```bash cd ./Wan2.1-T2V-1.3B python app.py ``` 此时浏览器窗口应弹出链接地址指向 localhost 地址的服务页面;按照提示填写应字段后点击按钮即刻体验神奇效果啦! ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值