Multi-Agentic RAG:探索智能问答系统的新边界(含代码)

在人工智能领域,随着大型语言模型(LLM)的快速发展,我们见证了问答系统能力的显著提升。然而,面对复杂、多步骤的问题,单一模型往往难以提供准确且高效的答案。为了应对这一挑战,多代理系统(Multi-Agentic Systems)应运而生,它通过分配和委托任务给专业化的模型,并将它们的输出像拼图一样组合起来,从而解决了这一难题。今天我们一起了解一下Multi-Agentic RAG(Retrieval Augmented Generation)系统(面向企业RAG(Retrieval Augmented Generation)系统的多维检索框架),特别是结合Hugging Face Code Agents的实现,以及这一框架如何为智能问答系统开辟新的可能性。

一、Multi-Agentic RAG系统的核心概念

Multi-Agentic RAG系统是多代理系统与检索增强生成(RAG)技术的结合体。RAG技术(

<think>我们正在讨论multi-turn agentic interaction(多轮代理式交互)。首先,我需要明确这个概念的定义及其技术原理。根据之前的对话历史,用户已经询问了定义和技术原理,因此我需要系统地组织信息。 定义部分: Multi-turn agentic interaction 指的是在多次交互回合中,智能体(agent)能够主动引导对话或任务流程,根据上下文进行决策以实现目标。这种交互强调agent的自主性(agency),即能够理解状态、执行动作并影响环境。 技术原理: 1. 状态管理:维护对话历史和上下文。 2. 决策机制:基于策略(policy)选择动作(如生成回复、调用工具)。 3. 学习与适应:通过强化学习或在线学习优化行为。 现在,我将按照要求组织回答: - 使用中文。 - 数学表达式用$...$(行内)或$$...$$(独立)。 - 生成相关问题。 - 结构清晰。 注意:由于这是一个概念性主题,数学表达式可能较少,但会在必要时使用(如描述决策模型)。</think>### Multi-turn Agentic Interaction 的定义与技术原理 #### **定义** **Multi-turn agentic interaction(多轮代理式交互)** 指智能体(agent)在**多轮对话**中主动引导交互进程,通过连续决策实现目标的过程。其核心是**代理性(agency)**:智能体具备自主决策能力,能根据环境反馈调整策略,而非被动响应用户指令[^1]。例如: - 用户提问后,智能体主动追问细节、拆解子任务或调用工具,形成**任务解决闭环**。 - 交互过程满足马尔可夫决策过程(MDP)模型: $$(S, A, P, R, \gamma)$$ 其中 $S$ 为状态空间(对话历史),$A$ 为动作空间(回复/工具调用),$P$ 为状态转移概率,$R$ 为奖励函数,$\gamma$ 为折扣因子[^2]。 #### **技术原理** 1. **状态管理(State Management)** - 通过**上下文窗口**(如Transformer的注意力机制)存储历史对话 $s_t = \{u_1, a_1, ..., u_t\}$,其中 $u_i$ 为用户输入,$a_i$ 为智能体动作。 - 使用**向量数据库**检索相关记忆,解决长程依赖问题[^3]。 2. **决策机制(Decision Engine)** - **策略函数 $\pi(a|s)$**:基于当前状态 $s_t$ 选择最优动作 $a_t$(如生成回复、调用API)。 - **价值函数 $V(s)$**:预判动作的长期收益,优化策略(参考贝尔曼方程): $$V(s) = \max_{a \in A} \left[ R(s,a) + \gamma \sum_{s'} P(s'|s,a) V(s') \right]$$ 3. **工具协作(Tool Augmentation)** - 智能体调用外部工具(如计算器、搜索引擎)执行子任务,例如: ```python def solve_equation(equation): # 调用符号计算库求解方程 return sympy.solve(equation) ``` - 通过**函数调用(function calling)** 实现工具与LLM的协同[^4]。 4. **学习与优化(Learning Mechanism)** - **强化学习(RL)**:基于用户反馈(如👍/👎)更策略,最大化累积奖励 $\sum \gamma^t R_t$。 - **在线微调**:利用实时交互数据调整模型参数。 #### **典型应用场景** - **复杂任务分解**:如旅行规划(先查机票→订酒店→生成行程)。 - **持续学习系统**:智能体通过交互迭代优化医疗诊断策略。 - **自动化工作流**:调用API链完成数据分析报告[^5]。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值