[leetcode-查找]--74. Search a 2D Matrix

本文介绍了一种高效的算法,用于在一个特殊格式的二维矩阵中搜索特定值。该矩阵每行元素升序排列,且下一行首元素大于上一行末元素。通过定位目标值所在行并应用二分查找,实现了O(m*logn)的时间复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Question 74. Search a 2D Matrix

Write an efficient algorithm that searches for a value in an m x n matrix. This matrix has the following properties:

(1) Integers in each row are sorted from left to right.
(2)The first integer of each row is greater than the last integer of the previous row.

For example,
Consider the following matrix:
[
[1, 3, 5, 7],
[10, 11, 16, 20],
[23, 30, 34, 50]
]
Given target = 3, return true.

中文:对于一个整型二维数组,每一行都是升序有序的,下一行第一个数比上一行最后一个数大。 对于一个给定的目标数target 判断是否在二维数组中,若在返回true,不在返回false。

实现: 这里我首先遍历每一行的第一个数据,获取到target应该在哪一行进行检验。然后在对应的行使用二分查找,找到数据。对于m*n 的数组,时间复杂度是O(m*logn)。

实现源码:

/**
 * 先找列, 遍历. 找行用二分查找
 * @param matrix
 * @param target
 * @return
 */
public static boolean searchMatrix(int[][] matrix, int target) {
    if(matrix == null || matrix.length==0 || matrix[0].length==0){
        return false;
    }

    int rows = matrix.length;//总行数
    int columns = matrix[0].length;//总列数
    int row=0;//比较的行数
    int i=0;
    //找到比较行
    for(i=0; i<rows; i++){
        if( (matrix[i][0] <= target) && (i < rows-1) && (matrix[i+1][0] > target)){
            row = i;
            break;
        }
        if( (matrix[i][0] <= target) && ( i == rows-1)){
            row = i;
            break;
        }
    }

    //二分查找找到对应的位置,找不到返回false
    int lo=0, hi=matrix[row].length-1;
    int mid;//中间索引

    while (lo <= hi){
        mid = (lo+hi)/2;

        if(matrix[row][mid] == target){
            return true;
        } else if(matrix[row][mid] < target){
            lo = mid+1;
        }else{
            hi = mid-1;
        }
    }
    return false;
}

本文完整代码 github地址:
https://github.com/leetcode-hust/leetcode/blob/master/louyuting/src/leetcode/Question74.java

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值