[NOIP2007 提高组] 矩阵取数游戏
P1005 [NOIP2007 提高组] 矩阵取数游戏
题目描述
帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的 n×mn \times mn×m 的矩阵,矩阵中的每个元素 ai,ja_{i,j}ai,j 均为非负整数。游戏规则如下:
- 每次取数时须从每行各取走一个元素,共 nnn 个。经过 mmm 次后取完矩阵内所有元素;
- 每次取走的各个元素只能是该元素所在行的行首或行尾;
- 每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分 = 被取走的元素值 ×2i\times 2^i×2i,其中 iii 表示第 iii 次取数(从 111 开始编号);
- 游戏结束总得分为 mmm 次取数得分之和。
帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。
输入格式
输入文件包括 n+1n+1n+1 行:
第一行为两个用空格隔开的整数 nnn 和 mmm。
第 2∼n+12\sim n+12∼n+1 行为 n×mn \times mn×m 矩阵,其中每行有 mmm 个用单个空格隔开的非负整数。
输出格式
输出文件仅包含 111 行,为一个整数,即输入矩阵取数后的最大得分。
样例 #1
样例输入 #1
2 3
1 2 3
3 4 2
样例输出 #1
82
提示
【数据范围】
对于 60%60\%60% 的数据,满足 1≤n,m≤301\le n,m\le 301≤n,m≤30,答案不超过 101610^{16}1016。
对于 100%100\%100% 的数据,满足 1≤n,m≤801\le n,m\le 801≤n,m≤80,0≤ai,j≤10000\le a_{i,j}\le10000≤ai,j≤1000。
【题目来源】
NOIP 2007 提高第三题。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const int MAXN = 85, Mod = 10000; //高精四位压缩大法好
int n, m;
int ar[MAXN];
struct HP {
int p[505], len;
HP() {
memset(p, 0, sizeof p);
len = 0;
} //这是构造函数,用于直接创建一个高精度变量
void print() {
printf("%d", p[len]);
for (int i = len - 1; i > 0; i--) {
if (p[i] == 0) {
printf("0000");
continue;
}
for (int k = 10; k * p[i] < Mod; k *= 10)
printf("0");
printf("%d", p[i]);
}
} //四位压缩的输出
} f[MAXN][MAXN], base[MAXN], ans;
HP operator + (const HP &a, const HP &b) {
HP c; c.len = max(a.len, b.len); int x = 0;
for (int i = 1; i <= c.len; i++) {
c.p[i] = a.p[i] + b.p[i] + x;
x = c.p[i] / Mod;
c.p[i] %= Mod;
}
if (x > 0)
c.p[++c.len] = x;
return c;
} //高精+高精
HP operator * (const HP &a, const int &b) {
HP c; c.len = a.len; int x = 0;
for (int i = 1; i <= c.len; i++) {
c.p[i] = a.p[i] * b + x;
x = c.p[i] / Mod;
c.p[i] %= Mod;
}
while (x > 0)
c.p[++c.len] = x % Mod, x /= Mod;
return c;
} //高精*单精
HP max(const HP &a, const HP &b) {
if (a.len > b.len)
return a;
else if (a.len < b.len)
return b;
for (int i = a.len; i > 0; i--)
if (a.p[i] > b.p[i])
return a;
else if (a.p[i] < b.p[i])
return b;
return a;
} //比较取最大值
void BaseTwo() {
base[0].p[1] = 1, base[0].len = 1;
for (int i = 1; i <= m + 2; i++){ //这里是m! m! m! 我TM写成n调了n年...
base[i] = base[i - 1] * 2;
}
} //预处理出2的幂
int main(void) {
scanf("%d%d", &n, &m);
BaseTwo();
while (n--) {
memset(f, 0, sizeof f);
for (int i = 1; i <= m; i++)
scanf("%d", &ar[i]);
for (int i = 1; i <= m; i++)
for (int j = m; j >= i; j--) { //因为终值是小区间,DP自然就从大区间开始
f[i][j] = max(f[i][j], f[i - 1][j] + base[m - j + i - 1] * ar[i - 1]);
f[i][j] = max(f[i][j], f[i][j + 1] + base[m - j + i - 1] * ar[j + 1]);
} //用结构体重载运算符写起来比较自然
HP Max;
for (int i = 1; i <= m; i++)
Max = max(Max, f[i][i] + base[m] * ar[i]);
ans = ans + Max; //记录到总答案中
}
ans.print(); //输出
return 0;
}
matrix=[]
n,m=input().split()
n,m=int(n),int(m)
for i in range(n):
row=input().split()
row=[0]+[int(count)for count in row]+[0]
#print(row)
# 把列表塞到列表里形成二维列表
matrix.append(row)
a=[1]#a[0]=1初始化为1
#求到2^m
for i in range(m):
a.append(a[i]*2)
#print(a)
ans=0
for i in range(n):
row=matrix[i]
w=1
#分配一个大小为m+2 * m+2的二维数组
dp=[[0]*(m+2)]*(m+2)
#print(dp)
for st in range(1,m+1):
for ed in range(m,0,-1):
if ed<st:
continue
dp[st][ed]=max(dp[st-1][ed]+row[st-1]*a[m-ed+st-1],dp[st][ed+1]+row[ed+1]*a[m-ed+st-1])
ans+=max([dp[i][i]+row[i]*a[m]for i in range(1,m+1)])
print(ans)
这段代码是解决矩阵取数游戏问题的一个正确实现。
-
初始化矩阵:首先,读取输入的
n
和m
,分别代表矩阵的行数和列数。然后,通过循环n
次,将每一行的数字读入row
列表,并在列表的首尾各添加一个0
,形成一个新的列表。这样做的目的是为了简化边界条件的处理,因为在选择行首或行尾的元素时,可以直接选择首尾的0
,而不会对实际的矩阵元素产生影响。 -
初始化2的幂数组:创建一个数组
a
,用于存储从2^0
到2^m
的值。由于每次取数的得分需要乘以2^i
,这个数组可以加速计算过程。 -
初始化动态规划数组:对于每一行,初始化一个
dp
数组,其大小为m+2
×m+2
,因为矩阵的行数已经通过首尾添加0
变成了m+2
。dp[st][ed]
表示从row
的第st
个元素取到第ed
个元素的最大得分。 -
动态规划计算:通过两层循环,遍历行中的每个可能的起始和结束位置。在每一步,
dp[st][ed]
的值是取row[st-1]
(行首元素)和row[ed+1]
(行尾元素)中的较大者,并乘以相应的2^i
(由数组a
提供)。这里m-ed+st-1
是当前的取数次数,因为总的取数次数是m
,而当前还没有取的元素数量是ed-st+1
。 -
计算总得分:对于每一行,计算
dp
数组对角线上每个单元格的值,并将对应元素的得分加上。由于dp[i][i]
对应的是选择行中间的元素,所以需要加上row[i]*a[m]
。最后,将每一行的这个最大得分累加到ans
中。 -
输出结果:最后,打印出
ans
,即整个矩阵取数游戏的最大得分。
这个算法的关键在于,它使用了动态规划来存储和计算每一步骤的最大得分,并且通过精心设计的 dp
数组,避免了重复计算,从而提高了算法的效率。通过在每一行的首尾添加 0
,简化了边界条件的处理,使得状态转移更加直观。