NOIP2007 提高组] 矩阵取数游戏

文章介绍了通过动态规划计算矩阵取数游戏中最大得分的过程,涉及高精度计算和优化算法策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

[NOIP2007 提高组] 矩阵取数游戏

P1005 [NOIP2007 提高组] 矩阵取数游戏

题目描述

帅帅经常跟同学玩一个矩阵取数游戏:对于一个给定的 n×mn \times mn×m 的矩阵,矩阵中的每个元素 ai,ja_{i,j}ai,j 均为非负整数。游戏规则如下:

  1. 每次取数时须从每行各取走一个元素,共 nnn 个。经过 mmm 次后取完矩阵内所有元素;
  2. 每次取走的各个元素只能是该元素所在行的行首或行尾;
  3. 每次取数都有一个得分值,为每行取数的得分之和,每行取数的得分 = 被取走的元素值 ×2i\times 2^i×2i,其中 iii 表示第 iii 次取数(从 111 开始编号);
  4. 游戏结束总得分为 mmm 次取数得分之和。

帅帅想请你帮忙写一个程序,对于任意矩阵,可以求出取数后的最大得分。

输入格式

输入文件包括 n+1n+1n+1 行:

第一行为两个用空格隔开的整数 nnnmmm

2∼n+12\sim n+12n+1 行为 n×mn \times mn×m 矩阵,其中每行有 mmm 个用单个空格隔开的非负整数。

输出格式

输出文件仅包含 111 行,为一个整数,即输入矩阵取数后的最大得分。

样例 #1

样例输入 #1

2 3
1 2 3
3 4 2

样例输出 #1

82

提示

【数据范围】

对于 60%60\%60% 的数据,满足 1≤n,m≤301\le n,m\le 301n,m30,答案不超过 101610^{16}1016
对于 100%100\%100% 的数据,满足 1≤n,m≤801\le n,m\le 801n,m800≤ai,j≤10000\le a_{i,j}\le10000ai,j1000

【题目来源】

NOIP 2007 提高第三题。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>

using namespace std;

const int MAXN = 85, Mod = 10000; //高精四位压缩大法好 
int n, m;
int ar[MAXN];

struct HP {
	int p[505], len;
	HP() {
		memset(p, 0, sizeof p);
		len = 0;
	} //这是构造函数,用于直接创建一个高精度变量 
	void print() {
		printf("%d", p[len]);  
        for (int i = len - 1; i > 0; i--) {  
            if (p[i] == 0) {
				printf("0000"); 
				continue;
			}
            for (int k = 10; k * p[i] < Mod; k *= 10) 
				printf("0");
            printf("%d", p[i]);
        }
	} //四位压缩的输出 
} f[MAXN][MAXN], base[MAXN], ans;

HP operator + (const HP &a, const HP &b) {
	HP c; c.len = max(a.len, b.len); int x = 0;
	for (int i = 1; i <= c.len; i++) {
		c.p[i] = a.p[i] + b.p[i] + x;
		x = c.p[i] / Mod;
		c.p[i] %= Mod;
	}
	if (x > 0)
		c.p[++c.len] = x;
	return c;
} //高精+高精 

HP operator * (const HP &a, const int &b) {
	HP c; c.len = a.len; int x = 0;
	for (int i = 1; i <= c.len; i++) {
		c.p[i] = a.p[i] * b + x;
		x = c.p[i] / Mod;
		c.p[i] %= Mod;
	}
	while (x > 0)
		c.p[++c.len] = x % Mod, x /= Mod;
	return c;
} //高精*单精 

HP max(const HP &a, const HP &b) {
	if (a.len > b.len)
		return a;
	else if (a.len < b.len)
		return b;
	for (int i = a.len; i > 0; i--)
		if (a.p[i] > b.p[i])
			return a;
		else if (a.p[i] < b.p[i])
			return b;
	return a;
} //比较取最大值 

void BaseTwo() {
	base[0].p[1] = 1, base[0].len = 1;
	for (int i = 1; i <= m + 2; i++){ //这里是m! m! m! 我TM写成n调了n年... 
		base[i] = base[i - 1] * 2;
	}
} //预处理出2的幂 

int main(void) {
	scanf("%d%d", &n, &m);
	BaseTwo();
	while (n--) {
		memset(f, 0, sizeof f);
		for (int i = 1; i <= m; i++)
			scanf("%d", &ar[i]);
		for (int i = 1; i <= m; i++)
			for (int j = m; j >= i; j--) { //因为终值是小区间,DP自然就从大区间开始 
				f[i][j] = max(f[i][j], f[i - 1][j] + base[m - j + i - 1] * ar[i - 1]); 
				f[i][j] = max(f[i][j], f[i][j + 1] + base[m - j + i - 1] * ar[j + 1]);
			} //用结构体重载运算符写起来比较自然 
		HP Max;
		for (int i = 1; i <= m; i++)
			Max = max(Max, f[i][i] + base[m] * ar[i]);
		ans = ans + Max; //记录到总答案中 
	}
	ans.print(); //输出 
	return 0;
}
matrix=[]

n,m=input().split()
n,m=int(n),int(m)

for i in range(n):
    row=input().split()
    row=[0]+[int(count)for count in row]+[0]
    #print(row)
    # 把列表塞到列表里形成二维列表
    matrix.append(row)

a=[1]#a[0]=1初始化为1
#求到2^m
for i in range(m):
    a.append(a[i]*2)
    #print(a)
    
ans=0

for i in range(n):
    row=matrix[i]
    w=1
    #分配一个大小为m+2 * m+2的二维数组
    dp=[[0]*(m+2)]*(m+2)
    #print(dp)
    for st in range(1,m+1):
        for ed in range(m,0,-1):
            if ed<st:
                continue
            dp[st][ed]=max(dp[st-1][ed]+row[st-1]*a[m-ed+st-1],dp[st][ed+1]+row[ed+1]*a[m-ed+st-1])
            
    ans+=max([dp[i][i]+row[i]*a[m]for i in range(1,m+1)])
    
print(ans)

这段代码是解决矩阵取数游戏问题的一个正确实现。

  1. 初始化矩阵:首先,读取输入的 nm,分别代表矩阵的行数和列数。然后,通过循环 n 次,将每一行的数字读入 row 列表,并在列表的首尾各添加一个 0,形成一个新的列表。这样做的目的是为了简化边界条件的处理,因为在选择行首或行尾的元素时,可以直接选择首尾的 0,而不会对实际的矩阵元素产生影响。

  2. 初始化2的幂数组:创建一个数组 a,用于存储从 2^02^m 的值。由于每次取数的得分需要乘以 2^i,这个数组可以加速计算过程。

  3. 初始化动态规划数组:对于每一行,初始化一个 dp 数组,其大小为 m+2×m+2,因为矩阵的行数已经通过首尾添加 0 变成了 m+2dp[st][ed] 表示从 row 的第 st 个元素取到第 ed 个元素的最大得分。

  4. 动态规划计算:通过两层循环,遍历行中的每个可能的起始和结束位置。在每一步,dp[st][ed] 的值是取 row[st-1](行首元素)和 row[ed+1](行尾元素)中的较大者,并乘以相应的 2^i(由数组 a 提供)。这里 m-ed+st-1 是当前的取数次数,因为总的取数次数是 m,而当前还没有取的元素数量是 ed-st+1

  5. 计算总得分:对于每一行,计算 dp 数组对角线上每个单元格的值,并将对应元素的得分加上。由于 dp[i][i] 对应的是选择行中间的元素,所以需要加上 row[i]*a[m]。最后,将每一行的这个最大得分累加到 ans 中。

  6. 输出结果:最后,打印出 ans,即整个矩阵取数游戏的最大得分。

这个算法的关键在于,它使用了动态规划来存储和计算每一步骤的最大得分,并且通过精心设计的 dp 数组,避免了重复计算,从而提高了算法的效率。通过在每一行的首尾添加 0,简化了边界条件的处理,使得状态转移更加直观。

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

百世修行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值