关于Logistic Regression 与 SVM的选择

本文介绍了如何根据训练样本数量及特征维度选择Logistic Regression、SVM及神经网络进行分类任务。当训练样本较大时,推荐使用Logistic Regression或不带核函数的SVM;样本较少时,依据特征维度的不同,可以选择带高斯核的SVM或增加特征后再用Logistic Regression等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

      目前,我们已经介绍完了Logistic Regression 与 SVM的基本原理,其都可以用来做分类问题,那么该如何选择呢?

  • 一般当训练样本较大时,选择Logistic Regression或者不带核函数的SVM;
  • 当训练样本较少时,并且特征维度适中,选择带高斯核的SVM;
  • 当训练样本较少,并且特征维度也少,尽量再增加些特征,然后选择Logistic Regression或者不带核函数的SVM。

      另外,以上三种情况都可以选择神经网络,只是有时训练时间有些长。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值