课程描述:
这是一门讲解深度学习方法入门课程,深度学习主要应用于机器翻译,图像识别,游戏,图像生成等等。课程同时设置了两个非常有趣的实战项目:
(1)基于RNN生成音乐
(2)基于X光的基本检测,GitHub地址:https://github.com/aamini/introtodeeplearning_labs
文末附课程所有视频教程、PPT及配套代码。
课程安排:
Session 1

Part1 深度学习详解
Part2 深度序列建模详解
Lab1 基于RNN生成音乐
Session 2

Part1 深度计算视觉详解
Part2 深度生成模型详解
Lab2 基于X光的基本检测
Session 3

Part1 深度强化学习详解
Part2 深度学习的局限性以及未来研究方向介绍
Session 4

Part1 Guest Lecture: Google
Part2 Guest Lecture: NVIDIA
Session 5

Part1 Guest Lecture: IBM
Part2 Guest Lecture: Tencent
视频及ppt下载地址:
链接:https://pan.baidu.com/s/1qZ0KDtU
密码:公众号回复“mdl”,即可获得密码
往期精彩内容推荐:
<模型汇总-6>堆叠自动编码器Stacked_AutoEncoder-SAE
<模型汇总_5>生成对抗网络GAN及其变体SGAN_WGAN_CGAN_DCGAN_InfoGAN_StackGAN
纯干货15 48个深度学习相关的平台和开源工具包,一定有很多你不知道的!!!
模型汇总19 强化学习(Reinforcement Learning)算法基础及分类
吴恩达-斯坦福CS229机器学习课程-2017(秋)最新课程分享