麻省理工学院-2018年最新深度学习算法及其应用入门课程资源分享

课程描述:

这是一门讲解深度学习方法入门课程,深度学习主要应用于机器翻译,图像识别,游戏,图像生成等等。课程同时设置了两个非常有趣的实战项目:

(1)基于RNN生成音乐

(2)基于X光的基本检测,GitHub地址:github.com/aamini/intro

文末附课程所有视频教程、PPT及配套代码。



课程安排:

Session 1

Part1 深度学习详解

Part2 深度序列建模详解

Lab1 基于RNN生成音乐


Session 2

Part1 深度计算视觉详解

Part2 深度生成模型详解

Lab2 基于X光的基本检测


Session 3

Part1 深度强化学习详解

Part2 深度学习的局限性以及未来研究方向介绍


Session 4

Part1 Guest Lecture: Google

Part2 Guest Lecture: NVIDIA


Session 5

Part1 Guest Lecture: IBM

Part2 Guest Lecture: Tencent


视频及ppt下载地址:

链接:pan.baidu.com/s/1qZ0KDt

密码:公众号回复“mdl”,即可获得密码


往期精彩内容推荐:

OpenAI-2018年强化学习领域7大最新研究方向全盘点

麻省理工学院(MIT)-2018年最新自动驾驶视频课程分享

最前沿的深度学习论文、架构及资源分享

<模型汇总-6>堆叠自动编码器Stacked_AutoEncoder-SAE

<模型汇总_5>生成对抗网络GAN及其变体SGAN_WGAN_CGAN_DCGAN_InfoGAN_StackGAN

纯干货15 48个深度学习相关的平台和开源工具包,一定有很多你不知道的!!!

模型汇总19 强化学习(Reinforcement Learning)算法基础及分类

吴恩达-斯坦福CS229机器学习课程-2017(秋)最新课程分享

神经机器翻译(NMT)的一些重要资源分享

《纯干货16》调整学习速率以优化神经网络训练

《模型汇总-20》深度学习背后的秘密:初学者指南-深度学习激活函数大全

模型汇总22 机器学习相关基础数学理论、概念、模型思维导图分享

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

lqfarmer

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值